搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁 黄明亮 马海涛 潘学民 刘晓英

液态Sn-Cu钎料的黏滞性与润湿行为研究

赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英
PDF
导出引用
导出核心图
  • 金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了Sn-xCu (x = 0.7, 1.5, 2)钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合Arrhenius方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态Sn-xCu钎料在相应温度下的表面张力, 并通过Sn-xCu钎料在Cu基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.
    • 基金项目: 国家自然科学基金(批准号:51171036)、高等学校博士学科点专项科研基金(批准号:20120041120038)和中央高校基本科研业务费(批准号:DUT11RC(3)56)资助的课题.
    [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 物理学报 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子物理学报 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • [1]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然, 孙春静, 杨中喜, 王瑞, 吉蕾蕾 2006 物理学报 55 1320]

    [2]

    Hou J X, Guo H X, Zhan C W, Tian X L, Chen X C 2006 Mater. Lett. 60 2038

    [3]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 056601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 056601]

    [4]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metall. Sin. 36 1134 (in Chinese) [孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [5]

    Wang J L 2002 Microelectron. Reliabbility 42 293

    [6]

    Sun Y Y, Zhang Z Q, Wong C P 2005 Macromol. Mater. Eng. 290 1204

    [7]

    Wei X Q, Zhou L, Huang H Z, Xiao H B 2005 Mater. Lett. 59 1889

    [8]

    Egry I, Lohöfer G, Sauerland S 1993 J. Non-Cryst. Solids 156-158 830

    [9]

    Egry I 1993 Scripta Metall. Mater. 28 1273

    [10]

    Zhao N, Pan X M, Ma H T, Wang L 2008 Acta Metall. Sin. 44 467 (in Chinese) [赵宁, 潘学民, 马海涛, 王来 2008 金属学报 44 467]

    [11]

    Zhao N, Pan X M, Ma H T, Dong C, Guo S H, Lu W, Wang L 2008 J. Phys. Confer. Ser. 98 U141

    [12]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese) [弭光宝, 李培杰, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 物理学报 60 046601]

    [13]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Physica B 387 1

    [14]

    Nishimura S, Matsumoto S, Terashima K 2002 J. Cryst. Growth 237-239 1667

    [15]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 J. At. Mol. Phys. 21 663 (in Chinese) [杨中喜, 耿浩然, 陶珍东, 孙春静 2004 原子分子物理学报 21 663]

    [16]

    Zhao N 2008 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese) [赵宁 2008 博士学位论文 (大连:大连理工大学)]

    [17]

    Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F 2001 Mater. Sci. Technol. 9 383 (in Chinese) [腾新营, 闽光辉, 刘含莲, 石志强, 王焕荣, 叶以富 2001 材料科学与工艺 9 383]

    [18]

    Iida T, Roderick I L 1993 The Physical Properties of Liquid Metals (Oxford:Clarendon Press)

    [19]

    Abtew M, Selvaduray G 2000 Mater. Sci. Eng. R 27 95

  • [1] 熊予莹, 代富平, 魏炳波, 张蜡宝. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [2] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [3] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [4] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [5] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [6] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [7] 李乡安, 龙志林, 彭建, 张平, 张志纯, 危洪清. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [8] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [9] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [10] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [11] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [12] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [13] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [14] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [15] 贺杰, 刘秀梅, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [16] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [17] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [18] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [19] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [20] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1107
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-16
  • 修回日期:  2012-12-24
  • 刊出日期:  2013-04-20

液态Sn-Cu钎料的黏滞性与润湿行为研究

  • 1. 大连理工大学, 辽宁省先进连接技术重点实验室, 大连 116024;
  • 2. 大连理工大学材料科学与工程学院, 大连 116024
    基金项目: 

    国家自然科学基金(批准号:51171036)、高等学校博士学科点专项科研基金(批准号:20120041120038)和中央高校基本科研业务费(批准号:DUT11RC(3)56)资助的课题.

摘要: 金属熔体的黏度和表面张力都是与液态结构相关的敏感物理性质, 且存在一定的相互关系. 对于微电子封装材料而言, 黏度和表面张力均是影响其工艺性能的重要参量. 本文利用回转振动式高温熔体黏度仪测量了Sn-xCu (x = 0.7, 1.5, 2)钎料熔体在不同温度下的黏度值, 发现在一定温度范围内钎料熔体的黏度值存在突变, 可划分为低温区和高温区. 在各温区内, 黏温关系很好地符合Arrhenius方程, 在此基础上讨论了液态钎料的结构特征和演变规律. 同时, 利用黏度值计算了液态Sn-xCu钎料在相应温度下的表面张力, 并通过Sn-xCu钎料在Cu基板上的润湿铺展实验对计算结果进行验证. 结果显示, 润湿角和扩展率的测试结果与表面张力的计算结果具有很好的一致性, 表明通过熔体黏度值来计算锡基二元无铅钎料合金表面张力并评估其润湿性能的方法是可行的.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回