搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压氦气介质阻挡放电中的周期一不对称放电实验研究

戴栋 王其明 郝艳捧

大气压氦气介质阻挡放电中的周期一不对称放电实验研究

戴栋, 王其明, 郝艳捧
PDF
导出引用
  • 大气压介质阻挡放电不仅具有对称周期一的放电形式, 还会在一定参数下呈现不对称周期一(AP1)放电. 本文采用具有平行电极结构的介质阻挡放电装置, 分别在气隙宽度1 mm, 3 mm, 7 mm和10 mm下的大气压氦气中进行了一系列放电实验, 研究了气隙宽度和外施电压频率对周期一放电对称性的影响. 实验结果表明: 在较宽的气隙宽度和外施电压频率参数区间内可以观察到显著的AP1放电; 气隙宽度越大越容易产生AP1放电, 同一气隙宽度下外施电压频率较高时则相对更容易观察到AP1放电; 随着气隙宽度增加, 首次击穿即呈现AP1 放电的外施电压频率临界值逐渐减小. 本文的研究初步验证了之前关于气隙宽度对AP1放电影响的数值仿真结果, 由此可以推测AP1放电并不只是由系统参数的不对称引起的, 也很可能是一种在一定的气隙宽度和外施电压频率下系统固有的、内在的高频不稳定放电行为.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2011ZM0016)和电力设备电气绝缘国家重点实验室开放基金(批准号: EIPE10210)资助的课题.
    [1]

    Roth J R, Rahel J, Dai X, Sherman D M 2005 J. Phys. D: Appl. Phys. 38 555

    [2]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1

    [3]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [4]

    Wang Y H, Zhang Y T, Wang D Z 2007 Appl. Phys. Lett. 90 071501

    [5]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [6]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Burahenko A G, Shut'ko Y U 2011 Appl. Phys. Lett. 98 021503

    [7]

    Shao T, Long K, Zhang C, Yan P, Zhang S, Pan R 2008 J. Phys. D: Appl. Phys. 41 215203

    [8]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [9]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39

    [10]

    Mangolini L, Anderson C, Heberlein J, Kortshagen U 2004 J. Phys. D: Appl. Phys. 37 1021

    [11]

    Shin J, Raja L L 2007 J. Phys. D: Appl. Phys. 40 3145

    [12]

    Ding W, He L M, Lan Y D 2010 High Voltage Engineering 36 456 (in Chinese) [丁伟, 何立明, 兰宇丹 2010 高电压技术 36 456]

    [13]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304

    [14]

    Wang Y H, Zhang Y T, Wang D Z, Kong M G 2007 Appl. Phys. Lett. 90 071501

    [15]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306

    [16]

    Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Phys. Plasmas 16 063507

    [17]

    Qi B, Huang J J, Zhang Z H, Wang D Z 2008 Chin. Phys. Lett. 25 3323

    [18]

    Dai D, Hou H X, Hao Y P 2011 Appl. Phys. Lett. 98 131503

    [19]

    Ha Y, Wang H J, Wang X F 2012 Phys. Plasmas 19 012308

  • [1]

    Roth J R, Rahel J, Dai X, Sherman D M 2005 J. Phys. D: Appl. Phys. 38 555

    [2]

    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1

    [3]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 物理学报 51 2778]

    [4]

    Wang Y H, Zhang Y T, Wang D Z 2007 Appl. Phys. Lett. 90 071501

    [5]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [6]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Burahenko A G, Shut'ko Y U 2011 Appl. Phys. Lett. 98 021503

    [7]

    Shao T, Long K, Zhang C, Yan P, Zhang S, Pan R 2008 J. Phys. D: Appl. Phys. 41 215203

    [8]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [9]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2003 J. Phys. D: Appl. Phys. 36 39

    [10]

    Mangolini L, Anderson C, Heberlein J, Kortshagen U 2004 J. Phys. D: Appl. Phys. 37 1021

    [11]

    Shin J, Raja L L 2007 J. Phys. D: Appl. Phys. 40 3145

    [12]

    Ding W, He L M, Lan Y D 2010 High Voltage Engineering 36 456 (in Chinese) [丁伟, 何立明, 兰宇丹 2010 高电压技术 36 456]

    [13]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304

    [14]

    Wang Y H, Zhang Y T, Wang D Z, Kong M G 2007 Appl. Phys. Lett. 90 071501

    [15]

    Shi H, Wang Y H, Wang D Z 2008 Phys. Plasmas 15 122306

    [16]

    Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Phys. Plasmas 16 063507

    [17]

    Qi B, Huang J J, Zhang Z H, Wang D Z 2008 Chin. Phys. Lett. 25 3323

    [18]

    Dai D, Hou H X, Hao Y P 2011 Appl. Phys. Lett. 98 131503

    [19]

    Ha Y, Wang H J, Wang X F 2012 Phys. Plasmas 19 012308

  • [1] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [2] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [3] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [4] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [5] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [6] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [7] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [8] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [9] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [10] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [11] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [12] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究. 物理学报, 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [13] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [14] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [15] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡. 物理学报, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [16] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [19] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [20] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1233
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-31
  • 修回日期:  2013-03-03
  • 刊出日期:  2013-07-05

大气压氦气介质阻挡放电中的周期一不对称放电实验研究

  • 1. 华南理工大学电力学院, 广州 510641;
  • 2. 西安交通大学电力设备电气绝缘国家重点实验室, 西安 710049
    基金项目: 

    中央高校基本科研业务费专项资金(批准号: 2011ZM0016)和电力设备电气绝缘国家重点实验室开放基金(批准号: EIPE10210)资助的课题.

摘要: 大气压介质阻挡放电不仅具有对称周期一的放电形式, 还会在一定参数下呈现不对称周期一(AP1)放电. 本文采用具有平行电极结构的介质阻挡放电装置, 分别在气隙宽度1 mm, 3 mm, 7 mm和10 mm下的大气压氦气中进行了一系列放电实验, 研究了气隙宽度和外施电压频率对周期一放电对称性的影响. 实验结果表明: 在较宽的气隙宽度和外施电压频率参数区间内可以观察到显著的AP1放电; 气隙宽度越大越容易产生AP1放电, 同一气隙宽度下外施电压频率较高时则相对更容易观察到AP1放电; 随着气隙宽度增加, 首次击穿即呈现AP1 放电的外施电压频率临界值逐渐减小. 本文的研究初步验证了之前关于气隙宽度对AP1放电影响的数值仿真结果, 由此可以推测AP1放电并不只是由系统参数的不对称引起的, 也很可能是一种在一定的气隙宽度和外施电压频率下系统固有的、内在的高频不稳定放电行为.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回