搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种预测材料蠕变速率的新模型

李菁田 王建录 张邦强 荣曦明 宁西京

一种预测材料蠕变速率的新模型

李菁田, 王建录, 张邦强, 荣曦明, 宁西京
PDF
导出引用
导出核心图
  • 长期以来,由于对材料蠕变过程缺乏清晰的微观物理描述,人们均使用经验公式预测稳态蠕变速率,这导致预测结果的不可靠. 将单原子统计模型拓展到该领域,在原子扩散水平上建立了一个预测材料稳态蠕变速率的模型. 为了检验该模型的可靠性,实验测量了42CrMoA,2Cr12Ni,1Cr12Mo三种材料的稳态蠕变速率. 所获得的实验结果以及其他文献的实验测试结果均与新模型的计算结果相符合.
    • 基金项目: 国家自然科学基金(批准号:51071048)资助的课题.
    [1]

    Bressers J 1981 Creep and Fatigue in High Temperature Alloys (London:Applied Science Publishers Ltd.) pp 1–5

    [2]

    Lin Y C, Xia Y C, Chen M S, Jiang Y Q Li L T 2013 Comput. Mater. Sci. 67 243

    [3]

    Marahleh G, Kheder A R I, Hamad H F 2006 Mater. Sci. Eng. A 433 305

    [4]

    Ji F, Song A J, Zhang W G, Hao Q H, Bai B W, Liu R P, Ma M Z 2010 Acta Phys. Sin. 59 2114 (in Chinese) [嵇峰, 宋爱君, 张卫国, 郝秋红, 白邦伟, 刘日平, 马明臻 2010 物理学报 59 2114]

    [5]

    Odqvist F K G, Hult J 1962 Kriechfestigkeit Metallischer Werkstoffe (Berlin: Springer) pp 6–30

    [6]

    Penny R K, Mariott D L 1995 Design for Creep (2nd Ed.) (London: Chapman & Hall) pp 8–41

    [7]

    Rabotnov Y N 1979 Mechanics of the Deformable Solid (in Russian) (Moscow: Nauka) pp 1–14

    [8]

    Skrzypek J J 1993 Plasticity and Creep (Boca Raton: CRC Press) pp 14–35

    [9]

    Lin Z Z, Yu W F, Wang Y, Ning X J 2011 Europhys. Lett. 94 40002

    [10]

    Lin Z Z, Zhuang J, Ning X J 2012 Europhys. Lett. 97 27006

    [11]

    Ming C, Lin Z Z, Cao R G, Yu W F, Ning X J 2012 Carbon 50 2651

    [12]

    Han X J, Wang Y, Lin Z Z, Zhang W X, Zhuang J, Ning X J 2010 J. Chem. Phys. 132 064103

    [13]

    Li W Y, Lin Z Z, Xu J J, Ning X J 2012 Chin. Phys. Lett. 29 080504

    [14]

    Norton F H 1929 The Creep of Steel at High Temperature (New York: McGraw-Hill) pp 36–52

    [15]

    Garofalo F 1965 Fundamentals of Creep and Creep-rupture in Metals (New York: Macmillan) pp 46–65

    [16]

    Tobolová Z, Čadek J 1979 Philos. Mag. 26 1419

    [17]

    Nabarro F R N, de Villiers H L 1995 The Physics of Creep and Creep-Resistant Alloys (1st Ed.) (London: Taylor & Francis) pp 25–33

    [18]

    Mukherjee A K, Bird J E, Dorn J E 1969 Trans. ASM 62 62

    [19]

    Guo J T 2008 Materials Science and Engineering for Superalloys (Vol. 1) (Beijing: Science Press) p 400 (in Chinese) [郭建亭 2008 高温合金材料学(上册) (北京: 科学出版社) 第400页]

    [20]

    Dash W C 1958 J. Appl. Phys. 29 705

    [21]

    Seitz F 1950 Phys. Rev. 79 890

  • [1]

    Bressers J 1981 Creep and Fatigue in High Temperature Alloys (London:Applied Science Publishers Ltd.) pp 1–5

    [2]

    Lin Y C, Xia Y C, Chen M S, Jiang Y Q Li L T 2013 Comput. Mater. Sci. 67 243

    [3]

    Marahleh G, Kheder A R I, Hamad H F 2006 Mater. Sci. Eng. A 433 305

    [4]

    Ji F, Song A J, Zhang W G, Hao Q H, Bai B W, Liu R P, Ma M Z 2010 Acta Phys. Sin. 59 2114 (in Chinese) [嵇峰, 宋爱君, 张卫国, 郝秋红, 白邦伟, 刘日平, 马明臻 2010 物理学报 59 2114]

    [5]

    Odqvist F K G, Hult J 1962 Kriechfestigkeit Metallischer Werkstoffe (Berlin: Springer) pp 6–30

    [6]

    Penny R K, Mariott D L 1995 Design for Creep (2nd Ed.) (London: Chapman & Hall) pp 8–41

    [7]

    Rabotnov Y N 1979 Mechanics of the Deformable Solid (in Russian) (Moscow: Nauka) pp 1–14

    [8]

    Skrzypek J J 1993 Plasticity and Creep (Boca Raton: CRC Press) pp 14–35

    [9]

    Lin Z Z, Yu W F, Wang Y, Ning X J 2011 Europhys. Lett. 94 40002

    [10]

    Lin Z Z, Zhuang J, Ning X J 2012 Europhys. Lett. 97 27006

    [11]

    Ming C, Lin Z Z, Cao R G, Yu W F, Ning X J 2012 Carbon 50 2651

    [12]

    Han X J, Wang Y, Lin Z Z, Zhang W X, Zhuang J, Ning X J 2010 J. Chem. Phys. 132 064103

    [13]

    Li W Y, Lin Z Z, Xu J J, Ning X J 2012 Chin. Phys. Lett. 29 080504

    [14]

    Norton F H 1929 The Creep of Steel at High Temperature (New York: McGraw-Hill) pp 36–52

    [15]

    Garofalo F 1965 Fundamentals of Creep and Creep-rupture in Metals (New York: Macmillan) pp 46–65

    [16]

    Tobolová Z, Čadek J 1979 Philos. Mag. 26 1419

    [17]

    Nabarro F R N, de Villiers H L 1995 The Physics of Creep and Creep-Resistant Alloys (1st Ed.) (London: Taylor & Francis) pp 25–33

    [18]

    Mukherjee A K, Bird J E, Dorn J E 1969 Trans. ASM 62 62

    [19]

    Guo J T 2008 Materials Science and Engineering for Superalloys (Vol. 1) (Beijing: Science Press) p 400 (in Chinese) [郭建亭 2008 高温合金材料学(上册) (北京: 科学出版社) 第400页]

    [20]

    Dash W C 1958 J. Appl. Phys. 29 705

    [21]

    Seitz F 1950 Phys. Rev. 79 890

  • [1] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [3] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [4] 王培良. 蚁群元胞优化模型在路径规划中的应用. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191774
    [5] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [6] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
  • 引用本文:
    Citation:
计量
  • 文章访问数:  510
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-10-12
  • 刊出日期:  2014-01-20

一种预测材料蠕变速率的新模型

  • 1. 复旦大学现代物理研究所, 上海 200433;
  • 2. 东方汽轮机有限公司, 德阳 618000;
  • 3. 复旦大学光科学与工程系, 上海 200433
    基金项目: 

    国家自然科学基金(批准号:51071048)资助的课题.

摘要: 长期以来,由于对材料蠕变过程缺乏清晰的微观物理描述,人们均使用经验公式预测稳态蠕变速率,这导致预测结果的不可靠. 将单原子统计模型拓展到该领域,在原子扩散水平上建立了一个预测材料稳态蠕变速率的模型. 为了检验该模型的可靠性,实验测量了42CrMoA,2Cr12Ni,1Cr12Mo三种材料的稳态蠕变速率. 所获得的实验结果以及其他文献的实验测试结果均与新模型的计算结果相符合.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回