搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性

徐庭栋 刘珍君 于鸿垚 王凯

拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性

徐庭栋, 刘珍君, 于鸿垚, 王凯
PDF
导出引用
  • 金属高温拉伸试验国际技术标准ISO 6892-2-2011认定, 拉伸试验的拉伸温度或应变速率的改变会引起拉伸试验测试力学性能结果的不确定性, 危及到拉伸试验技术的可靠性. 本文综述了拉伸试验测试断面收缩率或延伸率的不确定性: 中温脆性和应变速率脆性的实验现象和特征, 简述了多晶金属弹性变形微观理论的基本结果, 以此微观理论解释了上述两种测试不确定性的试验现象, 阐明了这两种测试不确定性是拉伸试验弹性变形阶段杂质晶界偏聚, 脆化了晶界引起的. 为修正金属拉伸试验技术标准, 避免断面收缩率测试的不确定性提供了理论基础.
    • 基金项目: 国家自然科学基金(批准号:51171050)资助的课题.
    [1]

    Zhang C L, Han P D, Wang X H, Zhang Z X, Wang L P, Xu H X 2013 Chin. Phys. B 22 126802

    [2]

    ASTM International: 2003 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials ASTM International, Designation: E21-03a, 1

    [3]

    International Standard 2011 ISO 6892-2, Metallic Materials-Tensile Testing Part 2: Method of Test at Elevated Temperature (1st Ed.) 9

    [4]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 689

    [5]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 5767

    [6]

    Otsuka M, Horiuchi R 1984 J. Jpn. Inst. Met. 48 688

    [7]

    Nowosielski R, Sakiewicz P, Mazurkiewicz J 2006 J. Ach. Mater. Manuf. Eng. 17 93

    [8]

    Xu T D, Zheng L, Wang K, Misra R D K 2013 Inter. Mater. Rev. 58 263

    [9]

    Xu T D 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p523 (in Chinese) [徐庭栋 2009 10000个科学难题· 物理学卷 (北京: 科学出版社) 第523页]

    [10]

    Suzuki H G 1997 ISIJ Inter. 37 250

    [11]

    Xu T D, Yu H Y, Liu Z J, Zheng Z W 2013 A Technical Report for ISO TC164 2013 Annual Meeting, 1

    [12]

    Nagasaki C, Aizawa A, Kihara J 1987 Trans. ISIJ 27 506

    [13]

    Kumar K S, Pang L X 1998 Mater. Sci. Eng. A 258 153

    [14]

    Xu T D 2000 J. Mater. Sci. 35 5621

    [15]

    Xu T D 2003 Phil. Mag. 83 889

    [16]

    Xu T D, Cheng B 2004 Prog. Mater. Sci. 49 109

    [17]

    Xu T D 2007 Phil. Mag. 87 1581

    [18]

    Zheng Z W, Xu T D, Wang K, Shao C 2012 Acta Phys. Sin. 61 246202 (in Chinese) [郑宗文, 徐庭栋, 王凯, 邵冲 2012 物理学报 61 246202]

    [19]

    Zener C (translated by Kong Q P, Zhou B L, Qian Z Q, Ma Y L) 1965 Elastic and Anelastic of Metals (Beijing: Science Press) pp3-40 (in Chinese) [甄纳C著 (孔庆平, 周本濂, 钱知强, 马应良 译) 1965 金属的弹性与滞弹性 (北京: 科学出版社) 第3-40页]

    [20]

    Shinoda T, Nakamura T 1981 Acta Metall. 29 1631

    [21]

    Song S H, Wu J, Wang D Y, Weng L Q, Zheng L 2006 Mater. Sci. Eng. A 430 320

    [22]

    Misra R D K 1996 Acta Mater. 44 885

    [23]

    Horikawa K, Kuramoto S, Kanno M 2001 Acta Mater. 49 3981

  • [1]

    Zhang C L, Han P D, Wang X H, Zhang Z X, Wang L P, Xu H X 2013 Chin. Phys. B 22 126802

    [2]

    ASTM International: 2003 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials ASTM International, Designation: E21-03a, 1

    [3]

    International Standard 2011 ISO 6892-2, Metallic Materials-Tensile Testing Part 2: Method of Test at Elevated Temperature (1st Ed.) 9

    [4]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 689

    [5]

    Sun D S, Yamane T, Hirao K 1991 J. Mater. Sci. 26 5767

    [6]

    Otsuka M, Horiuchi R 1984 J. Jpn. Inst. Met. 48 688

    [7]

    Nowosielski R, Sakiewicz P, Mazurkiewicz J 2006 J. Ach. Mater. Manuf. Eng. 17 93

    [8]

    Xu T D, Zheng L, Wang K, Misra R D K 2013 Inter. Mater. Rev. 58 263

    [9]

    Xu T D 2009 10000 Selected Problems in Sciences: Physics (Beijing: Science Press) p523 (in Chinese) [徐庭栋 2009 10000个科学难题· 物理学卷 (北京: 科学出版社) 第523页]

    [10]

    Suzuki H G 1997 ISIJ Inter. 37 250

    [11]

    Xu T D, Yu H Y, Liu Z J, Zheng Z W 2013 A Technical Report for ISO TC164 2013 Annual Meeting, 1

    [12]

    Nagasaki C, Aizawa A, Kihara J 1987 Trans. ISIJ 27 506

    [13]

    Kumar K S, Pang L X 1998 Mater. Sci. Eng. A 258 153

    [14]

    Xu T D 2000 J. Mater. Sci. 35 5621

    [15]

    Xu T D 2003 Phil. Mag. 83 889

    [16]

    Xu T D, Cheng B 2004 Prog. Mater. Sci. 49 109

    [17]

    Xu T D 2007 Phil. Mag. 87 1581

    [18]

    Zheng Z W, Xu T D, Wang K, Shao C 2012 Acta Phys. Sin. 61 246202 (in Chinese) [郑宗文, 徐庭栋, 王凯, 邵冲 2012 物理学报 61 246202]

    [19]

    Zener C (translated by Kong Q P, Zhou B L, Qian Z Q, Ma Y L) 1965 Elastic and Anelastic of Metals (Beijing: Science Press) pp3-40 (in Chinese) [甄纳C著 (孔庆平, 周本濂, 钱知强, 马应良 译) 1965 金属的弹性与滞弹性 (北京: 科学出版社) 第3-40页]

    [20]

    Shinoda T, Nakamura T 1981 Acta Metall. 29 1631

    [21]

    Song S H, Wu J, Wang D Y, Weng L Q, Zheng L 2006 Mater. Sci. Eng. A 430 320

    [22]

    Misra R D K 1996 Acta Mater. 44 885

    [23]

    Horikawa K, Kuramoto S, Kanno M 2001 Acta Mater. 49 3981

  • [1] 刘春明, 张 辉, 周永军, 张国英. 微合金化元素晶界偏聚与钢的超细化理论研究. 物理学报, 2006, 55(3): 1369-1373. doi: 10.7498/aps.55.1369
    [2] 文玉华, 张 杨, 朱梓忠. 晶体非线弹性变形的原子级模拟研究. 物理学报, 2008, 57(3): 1834-1839. doi: 10.7498/aps.57.1834
    [3] 张国英, 张 辉, 方戈亮, 李昱材. Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究. 物理学报, 2005, 54(11): 5288-5292. doi: 10.7498/aps.54.5288
    [4] 张国英, 张 辉, 赵子夫, 李昱材. 杂质对镁合金耐蚀性影响的电子理论研究. 物理学报, 2006, 55(5): 2439-2443. doi: 10.7498/aps.55.2439
    [5] 李昱材, 张国英, 张辉, 魏丹, 罗志成. Bi,Sb及稀土元素对AZ91镁合金高温性能影响机理研究. 物理学报, 2009, 58(1): 444-449. doi: 10.7498/aps.58.444
    [6] 张 颖, 吕广宏, 邓胜华, 王天民. Al晶界的第一性原理拉伸试验. 物理学报, 2006, 55(6): 2901-2907. doi: 10.7498/aps.55.2901
    [7] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [8] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [9] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [10] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [11] 刘小明, 由小川, 柳占立, 聂君峰, 庄茁. 单向拉伸作用下Cu(100)扭转晶界塑性行为研究. 物理学报, 2009, 58(3): 1849-1856. doi: 10.7498/aps.58.1849
    [12] 王如志, 徐利春, 严辉, 香山正宪. 含扭转晶界位错Al金属拉伸强度第一性原理预测. 物理学报, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [13] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [14] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [15] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [16] 吴奕初, 田中卓, 常香荣, 肖纪美. 不同速度拉伸变形时高纯铁的正电子湮没研究. 物理学报, 1991, 40(11): 1879-1882. doi: 10.7498/aps.40.1879
    [17] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [18] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [19] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [20] 殷建伟, 倪向贵. 拉伸条件下双壁碳纳米管弹性性能的原子模拟. 物理学报, 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
  • 引用本文:
    Citation:
计量
  • 文章访问数:  952
  • PDF下载量:  1051
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-07-10
  • 刊出日期:  2014-11-05

拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性

  • 1. 钢铁研究总院高温材料研究所, 北京 100081
    基金项目: 

    国家自然科学基金(批准号:51171050)资助的课题.

摘要: 金属高温拉伸试验国际技术标准ISO 6892-2-2011认定, 拉伸试验的拉伸温度或应变速率的改变会引起拉伸试验测试力学性能结果的不确定性, 危及到拉伸试验技术的可靠性. 本文综述了拉伸试验测试断面收缩率或延伸率的不确定性: 中温脆性和应变速率脆性的实验现象和特征, 简述了多晶金属弹性变形微观理论的基本结果, 以此微观理论解释了上述两种测试不确定性的试验现象, 阐明了这两种测试不确定性是拉伸试验弹性变形阶段杂质晶界偏聚, 脆化了晶界引起的. 为修正金属拉伸试验技术标准, 避免断面收缩率测试的不确定性提供了理论基础.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回