搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮氢共掺杂金刚石中氢的典型红外特征峰的表征

颜丙敏 贾晓鹏 秦杰明 孙士帅 周振翔 房超 马红安

氮氢共掺杂金刚石中氢的典型红外特征峰的表征

颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安
PDF
导出引用
  • 所有天然Ia型金刚石红外光谱中都存在3107 cm-1特征峰,而在金属触媒直接合成的金刚石红外光谱中没有检测出3107 cm-1特征峰. 本文在6.3 GPa,1500 ℃条件下,通过Fe70Ni30触媒中添加P3N5直接合成出具有3107 cm-1特征峰的氮氢共掺杂的金刚石. 红外光谱分析表明,合成的金刚石中氢有两种存在形式: 一种对应着乙烯基团C=CH2 中CH 键的伸缩振动(3107 cm-1)和弯曲振动(1450 cm-1)的吸收峰,另一种对应着sp3杂化CH键的对称伸缩振动(2850 cm-1)和反对称伸缩振动(2920 cm-1)的吸收峰. 通过分析发现,3107 cm-1吸收峰与金刚石中聚集态的氮原子有关,当金刚石中没有聚集态的氮元素时,即使氮含量高也不会出现3107 cm-1 峰;并且2850 和2920 cm-1附近的吸收峰比3107 cm-1附近的吸收峰更为普遍存在. 这说明sp3杂化CH键比乙烯基团的CH 键更广泛存在于金刚石中,从两者的峰值看,天然金刚石中的氢杂质主要以乙烯基团C=CH2 存在. 3107 cm-1吸收峰与聚集态的氮原子的这种存在关系为天然金刚石形成机制的研究提供了一种新思路,同时较低的合成条件也可能为氢与其他元素共掺杂合成具有n型半导体特性的金刚石提供一个较理想的合成环境.
    • 基金项目: 国家自然科学基金(批准号:51172089)资助的课题.
    [1]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [2]

    Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y, Lee S T 2003 Appl. Phys. Lett. 83 3365

    [3]

    Wang J, Chen G, Chatrathi M P, Fujishima A, Tryk D A, Shin D 2003 Anal. Chem. 75 935

    [4]

    Shin D, Sarada B V, Tryk D A, Fujishima A, Wang J 2003 Anal. Chem. 75 530

    [5]

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102]

    [6]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [7]

    Yu B D, Miyamoto Y, Sugino O 2000 Appl. Phys. Lett. 76 976

    [8]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, Ralchenko V G 2001 Diam. Relat. Mater. 10 593

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [11]

    Chrenko R M, McDonald R S, Darrow K A 1967 Nature 213 474

    [12]

    Runciman W A, Carter T 1971 Solid St. Commun. 9 315

    [13]

    Woods G S, Collins A T 1983 J. Phys. Chem. Solids 44 471

    [14]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khonkhryakov A F 2009 Cryst. Growth. Des. 9 2922

    [15]

    Meng Y F Yan C S, Lai J, Krasnicki S, Shu H Y, Yu T, Liang Q, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. USA 105 17620

    [16]

    Charles S J, Butler J E, Feygelson B N, Newton M E, Carroll D I, Steeds J W, Darwish H, Yan C S, Mao H K, Hemley R J 2004 Phys. Status Solidi A 201 2473

    [17]

    Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diam. Relat. Mater. 11 1863

    [18]

    Kiflawi I, Fisher D, Kanda H, Sittas G 1996 Diam. Relat. Mater. 5 1516

    [19]

    Zhang Z F, Jia X P, Sun S S, Liu X B, Li Y, Yan B M, Ma H A 2013 Int. J. Refractory Metals Hard Mater. 38 111

    [20]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [21]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys. Condens. Matter 14 11269

    [22]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [23]

    McNamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [24]

    Field J E 1992 The Properties of Natural and Synthetic Diamond (London: Academic) pp36-41, 81-179

    [25]

    Kanda H, Akaishi M Yamaoka S 1999 Diam. Relat. Mater. 8 1441

  • [1]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [2]

    Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y, Lee S T 2003 Appl. Phys. Lett. 83 3365

    [3]

    Wang J, Chen G, Chatrathi M P, Fujishima A, Tryk D A, Shin D 2003 Anal. Chem. 75 935

    [4]

    Shin D, Sarada B V, Tryk D A, Fujishima A, Wang J 2003 Anal. Chem. 75 530

    [5]

    Hu M H, Ma H A, Yan B M, Zhang Z F, Li Y, Zhou Z X, Qin J M, Jia X P 2012 Acta Phys. Sin. 61 078102 (in Chinese) [胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏 2012 物理学报 61 078102]

    [6]

    Koizumi S, Watanabe K, Hasegawa M, Kanda H 2001 Science 292 1899

    [7]

    Yu B D, Miyamoto Y, Sugino O 2000 Appl. Phys. Lett. 76 976

    [8]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, Ralchenko V G 2001 Diam. Relat. Mater. 10 593

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F, Zang C Y 2006 Carbon 44 913

    [11]

    Chrenko R M, McDonald R S, Darrow K A 1967 Nature 213 474

    [12]

    Runciman W A, Carter T 1971 Solid St. Commun. 9 315

    [13]

    Woods G S, Collins A T 1983 J. Phys. Chem. Solids 44 471

    [14]

    Palyanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G, Khonkhryakov A F 2009 Cryst. Growth. Des. 9 2922

    [15]

    Meng Y F Yan C S, Lai J, Krasnicki S, Shu H Y, Yu T, Liang Q, Mao H K, Hemley R J 2008 Proc. Natl. Acad. Sci. USA 105 17620

    [16]

    Charles S J, Butler J E, Feygelson B N, Newton M E, Carroll D I, Steeds J W, Darwish H, Yan C S, Mao H K, Hemley R J 2004 Phys. Status Solidi A 201 2473

    [17]

    Borzdov Y, Pal'yanov Y, Kupriyanov I, Gusev V, Khokhryakov A, Sokol A, Efremov A 2002 Diam. Relat. Mater. 11 1863

    [18]

    Kiflawi I, Fisher D, Kanda H, Sittas G 1996 Diam. Relat. Mater. 5 1516

    [19]

    Zhang Z F, Jia X P, Sun S S, Liu X B, Li Y, Yan B M, Ma H A 2013 Int. J. Refractory Metals Hard Mater. 38 111

    [20]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [21]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Bex P 2002 J. Phys. Condens. Matter 14 11269

    [22]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [23]

    McNamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [24]

    Field J E 1992 The Properties of Natural and Synthetic Diamond (London: Academic) pp36-41, 81-179

    [25]

    Kanda H, Akaishi M Yamaoka S 1999 Diam. Relat. Mater. 8 1441

  • [1] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [2] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [3] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [4] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [5] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [6] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [7] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构. 物理学报, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [8] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [11] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [12] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [13] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [14] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构. 物理学报, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [15] 李荣斌. 同质与异质外延掺杂CVD金刚石薄膜的结构与性能. 物理学报, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [16] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [17] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [18] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [19] 潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏. SiC过渡层对氟化类金刚石薄膜附着特性的影响. 物理学报, 2013, 62(1): 015209. doi: 10.7498/aps.62.015209
    [20] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1423
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-05
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-02-05

氮氢共掺杂金刚石中氢的典型红外特征峰的表征

  • 1. 吉林大学, 超硬材料国家重点实验室, 长春 130012;
  • 2. 长春理工大学材料科学与工程学院, 长春 130022
    基金项目: 

    国家自然科学基金(批准号:51172089)资助的课题.

摘要: 所有天然Ia型金刚石红外光谱中都存在3107 cm-1特征峰,而在金属触媒直接合成的金刚石红外光谱中没有检测出3107 cm-1特征峰. 本文在6.3 GPa,1500 ℃条件下,通过Fe70Ni30触媒中添加P3N5直接合成出具有3107 cm-1特征峰的氮氢共掺杂的金刚石. 红外光谱分析表明,合成的金刚石中氢有两种存在形式: 一种对应着乙烯基团C=CH2 中CH 键的伸缩振动(3107 cm-1)和弯曲振动(1450 cm-1)的吸收峰,另一种对应着sp3杂化CH键的对称伸缩振动(2850 cm-1)和反对称伸缩振动(2920 cm-1)的吸收峰. 通过分析发现,3107 cm-1吸收峰与金刚石中聚集态的氮原子有关,当金刚石中没有聚集态的氮元素时,即使氮含量高也不会出现3107 cm-1 峰;并且2850 和2920 cm-1附近的吸收峰比3107 cm-1附近的吸收峰更为普遍存在. 这说明sp3杂化CH键比乙烯基团的CH 键更广泛存在于金刚石中,从两者的峰值看,天然金刚石中的氢杂质主要以乙烯基团C=CH2 存在. 3107 cm-1吸收峰与聚集态的氮原子的这种存在关系为天然金刚石形成机制的研究提供了一种新思路,同时较低的合成条件也可能为氢与其他元素共掺杂合成具有n型半导体特性的金刚石提供一个较理想的合成环境.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回