搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究

卞华栋 戴晔 叶俊毅 宋娟 阎晓娜 马国宏

紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究

卞华栋, 戴晔, 叶俊毅, 宋娟, 阎晓娜, 马国宏
PDF
导出引用
  • 本文通过数值模拟(3+1)维扩展的广义非线性薛定谔方程,研究了紧聚焦飞秒激光脉冲在诱导石英玻璃的非线性电离过程中电子动量弛豫时间对于该电离过程的影响. 计算结果证明电子动量弛豫时间会直接影响入射脉冲在焦点区域所形成的峰值场强、自由电子态密度和能流等参量的分布态势,因此在与实验结果相比较后发现适合于相互作用过程的电子动量弛豫时间的理论值约为1.27 fs. 进一步的研究表明,电子动量弛豫时间与逆韧致吸收效应、雪崩电离的概率、等离子体密度、等离子体的自散焦效果以及间接引起的焦平面位置的移动都有着密切的联系. 当前的研究结果表明电子动量弛豫时间在飞秒激光脉冲与物质相互作用的过程中发挥着重要作用.
    • 基金项目: 国家自然科学基金(批准号:60908007,11174159,61205128)和上海市自然科学基金(批准号:13ZR1414800)资助的课题.
    [1]

    Gattass R R, Mazur E 2008 Nature Photon. 2 219

    [2]

    Poumellec B, Lancry M, Chahid-Erraji A, Kazansky P G 2011 Opt. Mater. Express 1 766

    [3]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese)[何飞, 程亚2007 中国激光34 595]

    [4]

    Peng N N, Huo Y Y, Zhou K, Jia X, Pan J, Sun Z R, Jia T Q 2013 Acta Phys. Sin. 62 094201 (in Chinese)[彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿2013 物理学报62 094201]

    [5]

    Richter S, Jia F, Heinrich M, Döring S 2012 Opt. Lett. 37 482

    [6]

    Agger C, Petersen C 2012 J. Opt. Soc. Am. B 29 635

    [7]

    Zhang Z X, Xu R J, Song L W Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209 (in Chinese)[张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣2012 物理学报61 184209]

    [8]

    Mauclair C, Mermillod-Blondin A, Landon S, Huot N, Rosenfeld A, Hertel I V, Audouard E, Myiamoto I, Stoian R 2011 Opt. Lett. 36 325

    [9]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [10]

    Sun Q, Asahi H, Nishijima Y, Murazawa N, Ueno K, Misawa H 2010 Opt. Express 18 24495

    [11]

    Gao Y C, Qu S L, Song Y L, Liu S T, Zhao C J, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 143 (in Chinese)[高亚臣, 曲士良, 宋瑛林, 刘树田, 赵崇军, 邱建荣, 朱从善 2005 物理学报54 143]

    [12]

    Jin Z M, Guo F Y, Ma H, Wang L H, Ma G H, Chen J Z 2011 Acta Phys. Sin. 60 087803 (in Chinese)[金钻明, 郭飞云, 马红, 王立华, 马国宏, 陈建中2011 物理学报60 087803]

    [13]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Bergé L 2001 Phys. Rev. Lett. 87 19

    [14]

    Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S, Mysyrowicz A 2002 Phys. Rev. Lett. 89 186601

    [15]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [16]

    Burakov I M, Bulgakova N M, Stoian R, Mermillod-Blondin A, Audouard E, Rosenfeld A, Husakou A, Hertel I V 2007 J. Appl. Phys. 101 043506

    [17]

    Bellec M, Royon A, Bousquet B, Bourhis K 2009 Opt. Express 17 10304

    [18]

    Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A 2005 Phys. Rev. B 71 125435

    [19]

    Stuart B, Feit M, Herman S 1996 Phys. Rev. B 53 1749

    [20]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [21]

    Rethfeld B 2004 Phys. Rev. Lett. 92 187401

    [22]

    Jia T Q, Chen H, Zhang Y M 200 Phys. Rev. B 61 16522

  • [1]

    Gattass R R, Mazur E 2008 Nature Photon. 2 219

    [2]

    Poumellec B, Lancry M, Chahid-Erraji A, Kazansky P G 2011 Opt. Mater. Express 1 766

    [3]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese)[何飞, 程亚2007 中国激光34 595]

    [4]

    Peng N N, Huo Y Y, Zhou K, Jia X, Pan J, Sun Z R, Jia T Q 2013 Acta Phys. Sin. 62 094201 (in Chinese)[彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿2013 物理学报62 094201]

    [5]

    Richter S, Jia F, Heinrich M, Döring S 2012 Opt. Lett. 37 482

    [6]

    Agger C, Petersen C 2012 J. Opt. Soc. Am. B 29 635

    [7]

    Zhang Z X, Xu R J, Song L W Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209 (in Chinese)[张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣2012 物理学报61 184209]

    [8]

    Mauclair C, Mermillod-Blondin A, Landon S, Huot N, Rosenfeld A, Hertel I V, Audouard E, Myiamoto I, Stoian R 2011 Opt. Lett. 36 325

    [9]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [10]

    Sun Q, Asahi H, Nishijima Y, Murazawa N, Ueno K, Misawa H 2010 Opt. Express 18 24495

    [11]

    Gao Y C, Qu S L, Song Y L, Liu S T, Zhao C J, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 143 (in Chinese)[高亚臣, 曲士良, 宋瑛林, 刘树田, 赵崇军, 邱建荣, 朱从善 2005 物理学报54 143]

    [12]

    Jin Z M, Guo F Y, Ma H, Wang L H, Ma G H, Chen J Z 2011 Acta Phys. Sin. 60 087803 (in Chinese)[金钻明, 郭飞云, 马红, 王立华, 马国宏, 陈建中2011 物理学报60 087803]

    [13]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Bergé L 2001 Phys. Rev. Lett. 87 19

    [14]

    Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S, Mysyrowicz A 2002 Phys. Rev. Lett. 89 186601

    [15]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [16]

    Burakov I M, Bulgakova N M, Stoian R, Mermillod-Blondin A, Audouard E, Rosenfeld A, Husakou A, Hertel I V 2007 J. Appl. Phys. 101 043506

    [17]

    Bellec M, Royon A, Bousquet B, Bourhis K 2009 Opt. Express 17 10304

    [18]

    Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A 2005 Phys. Rev. B 71 125435

    [19]

    Stuart B, Feit M, Herman S 1996 Phys. Rev. B 53 1749

    [20]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [21]

    Rethfeld B 2004 Phys. Rev. Lett. 92 187401

    [22]

    Jia T Q, Chen H, Zhang Y M 200 Phys. Rev. B 61 16522

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1638
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2013-12-02
  • 刊出日期:  2014-04-05

紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究

  • 1. 上海大学物理系, 上海 200444;
  • 2. 江苏大学材料科学与工程学院, 镇江 212013
    基金项目: 

    国家自然科学基金(批准号:60908007,11174159,61205128)和上海市自然科学基金(批准号:13ZR1414800)资助的课题.

摘要: 本文通过数值模拟(3+1)维扩展的广义非线性薛定谔方程,研究了紧聚焦飞秒激光脉冲在诱导石英玻璃的非线性电离过程中电子动量弛豫时间对于该电离过程的影响. 计算结果证明电子动量弛豫时间会直接影响入射脉冲在焦点区域所形成的峰值场强、自由电子态密度和能流等参量的分布态势,因此在与实验结果相比较后发现适合于相互作用过程的电子动量弛豫时间的理论值约为1.27 fs. 进一步的研究表明,电子动量弛豫时间与逆韧致吸收效应、雪崩电离的概率、等离子体密度、等离子体的自散焦效果以及间接引起的焦平面位置的移动都有着密切的联系. 当前的研究结果表明电子动量弛豫时间在飞秒激光脉冲与物质相互作用的过程中发挥着重要作用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回