搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究

黄诗盛 王勇刚 李会权 林荣勇 闫培光

引用本文:
Citation:

氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究

黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光

Experimental studies of multiple pulses in a passively ytterbium-doped fiber laser based on graphene-oxide saturable absorber

Huang Shi-Sheng, Wang Yong-Gang, Li Hui-Quan, Lin Rong-Yong, Yan Pei-Guang
PDF
导出引用
  • 利用氧化石墨烯作为可饱和吸收体,在被动锁模全正常色散掺镱光纤激光器中研究了多脉冲的现象. 在同一抽运功率不同偏振态下,实验获得了矩形脉冲谐波锁模、耗散孤子谐波锁模、准谐波锁模,脉冲峰值周期性调制,脉冲簇、脉冲束、混沌多重脉冲的多脉冲现象. 插入激光腔内的2 nm窄带滤波器具有限制增益带宽、对脉冲塑形、诱导多脉冲产生的作用. 调节偏振控制器相当于改变腔内增益,是实现不同类型多脉冲现象的主要原因. 本实验研究有利于加深对多脉冲动力学行为在正常色散区域氧化石墨烯锁模掺镱光纤激光器中的理解.
    The different multiple pulse phenomena are experimentally studied in a passively mode-locked ytterbium-doped fiber laser based on graphene-oxide saturable absorber (GOSA) with net normal dispersion cavity. At the same pump power with different polarization orientations, we observe the multiple pulse phenomena, including harmonic mode-locking of rectangular pulses, dissipative solitons, quasi-harmonic mode-locking, periodical peak modulation, multipulse bunches, multipulse cluster, and chaotic multipulse. The inserted 2 nm narrow bandwidth filter is important for limiting the gain bandwidth and shaping pulses. Adjusting the polarization controller is equivalent to changing the gain in the laser cavity, which is the main reason for the formation of different multiple pulses states. This is the first time that different multiple pulses states have been observed in an-normal-dispersion Yb-doped fiber laser with graphene-oxide saturable absorber. These results could extend the understanding of multiple pulse dynamics in GOSA mode-locked fiber lasers.
    • 基金项目: 广东省自然科学基金(批准号:S2013010012235)、广东省高校科技创新项目(批准号:2013KJCX0161)和深圳市科技计划目(批准号:JCYJ20120613172042264,JCYJ20130329142040731)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. S2013010012235), the Foundation for Scientific and Technical Innovation in Higher Education of Guangdong, China (Grant No. 2013KJCX0161), and the Science and Technology Project of Shenzhen City, China (Grant Nos. JCYJ20120613172042264, JCYJ20130329142040731).
    [1]

    Grelu P, Akhmediev N 2004 Opt. Express 12 3184

    [2]

    Amrani F, Salhi M, Leblond H, Sanchez F 2010 Opt. Commun. 283 5224

    [3]

    Feng Q, Chen Y, Zhao C, Li Y, Wen J G, Zhang H 2013 Opt. Engineer. 52 44201

    [4]

    Chen H R, Lin K H, Tsai C Y, Wu H H, Wu C H, Chen C H, Chi Y C, Lin G R, Hsieh W F 2013 Opt. Lett. 38 845

    [5]

    Chen W C, Luo Z C, Xu W C 2009 Laser Phys. Lett. 6 816

    [6]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese) [徐中巍, 张祖兴 2013 物理学报 62 104210]

    [7]

    Li X H, Wang Y S, Zhao W, Zhang W, Hu X H, Gao C X, Zhang H, Yang Z, Wang H S, Wang X L, Li C, Shen D Y 2012 Opt. Commun. 285 1356

    [8]

    Chen W C, Xu W C, Cao H, Han D G 2007 Asia Pacific Opt. Communications 67813Q

    [9]

    Chouli S, Grelu P 2010 Phys. Rev. A 81 63829

    [10]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [11]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [12]

    Cui Y D, Liu X M 2013 Opt. Express 21 18969

    [13]

    Song Y F, Li L, Zhang H, Shen D Y, Tang D Y, Loh K P 2013 Opt. Express 21 10010

    [14]

    Meng Y C, Zhang S M, Li X L, Li H F, Du J, Hao Y P 2012 Opt. Express 20 6685

    [15]

    Amrani F, Haboucha A, Salhi M, Leblond H, Komarov A, Grelu P, Sanchez F 2009 Opt. Lett. 34 2120

    [16]

    Wang L R, Liu X M, Gong Y K, Hu X H, Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4664 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 物理学报 58 4664]

    [17]

    Zhang Z X, Dai G X 2011 Acta Opt. Sin. 31 131 (in Chinese) [张祖兴, 戴国星 2011 光学学报 31 131]

    [18]

    Zhao H, Chai L, Ouyang C M, Hu M L, Wang Q Y 2010 Chin. J. Lasers 37 2958 (in Chinese) [赵慧, 柴路, 欧阳春梅, 胡明列, 王清月 2010 中国激光 37 2958]

    [19]

    Bao C Y, Xiao X S, Yang C X 2013 Opt. Lett. 38 1875

    [20]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J, Tsang Y H 2012 Chin. Phys. Lett. 29 114206

    [21]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 75105

    [22]

    Wang Y G, Chen H R, Wen X M, Hsieh W F, Tang J 2011 Nanotechnology 22 455203

    [23]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 43816

    [24]

    Liu X M 2010 Phys Rev. A 81 23811

    [25]

    Liu X M 2011 Phys. Rev A 84 53828

    [26]

    Zhang H, Tang D Y, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [27]

    Zhang H, Tang D, Knize R J, Zhao L M, Bao Q L, Loh K P 2010 Appl. Phys. Lett. 96 111112

  • [1]

    Grelu P, Akhmediev N 2004 Opt. Express 12 3184

    [2]

    Amrani F, Salhi M, Leblond H, Sanchez F 2010 Opt. Commun. 283 5224

    [3]

    Feng Q, Chen Y, Zhao C, Li Y, Wen J G, Zhang H 2013 Opt. Engineer. 52 44201

    [4]

    Chen H R, Lin K H, Tsai C Y, Wu H H, Wu C H, Chen C H, Chi Y C, Lin G R, Hsieh W F 2013 Opt. Lett. 38 845

    [5]

    Chen W C, Luo Z C, Xu W C 2009 Laser Phys. Lett. 6 816

    [6]

    Xu Z W, Zhang Z X 2013 Acta Phys. Sin. 62 104210 (in Chinese) [徐中巍, 张祖兴 2013 物理学报 62 104210]

    [7]

    Li X H, Wang Y S, Zhao W, Zhang W, Hu X H, Gao C X, Zhang H, Yang Z, Wang H S, Wang X L, Li C, Shen D Y 2012 Opt. Commun. 285 1356

    [8]

    Chen W C, Xu W C, Cao H, Han D G 2007 Asia Pacific Opt. Communications 67813Q

    [9]

    Chouli S, Grelu P 2010 Phys. Rev. A 81 63829

    [10]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [11]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [12]

    Cui Y D, Liu X M 2013 Opt. Express 21 18969

    [13]

    Song Y F, Li L, Zhang H, Shen D Y, Tang D Y, Loh K P 2013 Opt. Express 21 10010

    [14]

    Meng Y C, Zhang S M, Li X L, Li H F, Du J, Hao Y P 2012 Opt. Express 20 6685

    [15]

    Amrani F, Haboucha A, Salhi M, Leblond H, Komarov A, Grelu P, Sanchez F 2009 Opt. Lett. 34 2120

    [16]

    Wang L R, Liu X M, Gong Y K, Hu X H, Wang Y S, Lu K Q 2009 Acta Phys. Sin. 58 4664 (in Chinese) [王擂然, 刘雪明, 宫永康, 胡晓鸿, 王屹山, 卢克清 2009 物理学报 58 4664]

    [17]

    Zhang Z X, Dai G X 2011 Acta Opt. Sin. 31 131 (in Chinese) [张祖兴, 戴国星 2011 光学学报 31 131]

    [18]

    Zhao H, Chai L, Ouyang C M, Hu M L, Wang Q Y 2010 Chin. J. Lasers 37 2958 (in Chinese) [赵慧, 柴路, 欧阳春梅, 胡明列, 王清月 2010 中国激光 37 2958]

    [19]

    Bao C Y, Xiao X S, Yang C X 2013 Opt. Lett. 38 1875

    [20]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J, Tsang Y H 2012 Chin. Phys. Lett. 29 114206

    [21]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 75105

    [22]

    Wang Y G, Chen H R, Wen X M, Hsieh W F, Tang J 2011 Nanotechnology 22 455203

    [23]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 43816

    [24]

    Liu X M 2010 Phys Rev. A 81 23811

    [25]

    Liu X M 2011 Phys. Rev A 84 53828

    [26]

    Zhang H, Tang D Y, Wu X, Zhao L M 2009 Opt. Express 17 12692

    [27]

    Zhang H, Tang D, Knize R J, Zhao L M, Bao Q L, Loh K P 2010 Appl. Phys. Lett. 96 111112

计量
  • 文章访问数:  2127
  • PDF下载量:  605
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-01
  • 修回日期:  2013-12-03
  • 刊出日期:  2014-04-05

氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究

  • 1. 深圳大学电子科学与技术学院, 深圳市激光工程重点实验室, 深圳 518060;
  • 2. 中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119
    基金项目: 

    广东省自然科学基金(批准号:S2013010012235)、广东省高校科技创新项目(批准号:2013KJCX0161)和深圳市科技计划目(批准号:JCYJ20120613172042264,JCYJ20130329142040731)资助的课题.

摘要: 利用氧化石墨烯作为可饱和吸收体,在被动锁模全正常色散掺镱光纤激光器中研究了多脉冲的现象. 在同一抽运功率不同偏振态下,实验获得了矩形脉冲谐波锁模、耗散孤子谐波锁模、准谐波锁模,脉冲峰值周期性调制,脉冲簇、脉冲束、混沌多重脉冲的多脉冲现象. 插入激光腔内的2 nm窄带滤波器具有限制增益带宽、对脉冲塑形、诱导多脉冲产生的作用. 调节偏振控制器相当于改变腔内增益,是实现不同类型多脉冲现象的主要原因. 本实验研究有利于加深对多脉冲动力学行为在正常色散区域氧化石墨烯锁模掺镱光纤激光器中的理解.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回