搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响

谢蒂旎 彭洪尚 黄世华 由芳田 王小卉

水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响

谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉
PDF
导出引用
导出核心图
  • 采用共沉淀法制备了EuVO4@YVO4核壳结构纳米颗粒,然后用聚电解质聚苯乙烯磺酸钠对其进行包覆和保护,并在200 ℃下对样品水热处理0–48 h. 在水热处理48 h后,样品的发光强度增强了约5倍,平均发光寿命由0.410 ms延长至0.579 ms. 对样品的发光衰减曲线的拟合、分析为Eu3+的扩散提供了有力的证据. 这种自内而外的扩散降低了样品核心中Eu3+的局域浓度,削弱了浓度猝灭效应,同时又能够避免表面猝灭效应的发生,从而使得样品的发光寿命变长、发光效率迅速提升.
    • 基金项目: 国家自然科学基金(批准号:61078069,10979009)、教育部新世纪优秀人才支持计划(批准号:12-0177)和中央高校基本科研业务费专项资金(批准号:2010JBZ006,2013YJS090)资助的课题.
    [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)

    [3]

    Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321

    [4]

    Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)

    [5]

    Thanh N T K, Green L A W 2010 Nano Today 5 213

    [6]

    Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188

    [7]

    Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698

    [8]

    Huang S H, You F T 2009 J. Lumin. 129 1692

    [9]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [10]

    Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904

    [11]

    Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506

    [12]

    Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282

    [13]

    Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795

    [14]

    Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106

    [15]

    DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769

    [16]

    Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331

    [17]

    Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264

    [18]

    Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433

    [19]

    Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645

    [20]

    Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754

    [21]

    Blasse G 1967 J. Chem. Phys. 46 2583

    [22]

    Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639

    [23]

    Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 物理学报 54 3894]

    [24]

    Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 物理学报 56 4187]

    [25]

    Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474

    [26]

    Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014

    [27]

    Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631

  • [1]

    Alivisatos A P 1996 Science 271 933

    [2]

    Vollath D 2013 Nanomaterials: An Introduction to Synthesis, Properties and Applications (Weinheim: Wiley-VCH)

    [3]

    Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z 2010 J. Fluoresce. 20 321

    [4]

    Chen X Y, Liu Y S, Tu D T 2014 Lanthanide-Doped Luminescent Nanomaterials (Berlin: Springer)

    [5]

    Thanh N T K, Green L A W 2010 Nano Today 5 213

    [6]

    Tian L J, Sun Y J, Yu Y, Kong X G, Zhang H 2008 Chem. Phys. Lett. 452 188

    [7]

    Gao C C, Huang S H, You F T, Kang K, Feng Y 2008 Chin. Phys. Lett. 25 698

    [8]

    Huang S H, You F T 2009 J. Lumin. 129 1692

    [9]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [10]

    Li C X, Liu X M, Yang P P, Zhang C M, Lian H Z, Lin J 2008 J. Phys. Chem. C 112 2904

    [11]

    Ghosh P, Kar A, Patra A 2010 J. Appl. Phys. 108 113506

    [12]

    Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y L 2013 Theranostics 3 282

    [13]

    Jiang D X, Cao L X, Su G, Liu W, Qu H, Sun Y G, Dong B H 2009 Mater. Chem. Phys. 115 795

    [14]

    Li X M, Shen D K, Yang J P, Yao C, Che R C, Zhang F, Zhao D Y 2012 Chem. Mater. 25 106

    [15]

    DiMaio J, Kokuoz B, James T, Harkey T, Monofsky D, Ballato J 2008 Opt. Express 16 11769

    [16]

    Zheng J J, Ji W Y, Wang X Y, Ikezawa M, Jig P T, Liu X Y, Li H B, Zhao J L, Masumoto Y 2010 J. Phys. Chem. C 114 15331

    [17]

    Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP 2002 Chem. Mater. 14 2264

    [18]

    Yu J G, Li C, Liu S W 2008 J. Colloid Interf. Sci. 326 433

    [19]

    Li Y H, Hong G Y 2005 J. Solid State Chem. 178 645

    [20]

    Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P 2003 J. Phys. Chem. B 107 6754

    [21]

    Blasse G 1967 J. Chem. Phys. 46 2583

    [22]

    Blasse G, Kiliaan H, Vries A 1988 J. Lumin. 40 639

    [23]

    Yu C L, Dai S X, Zhou G, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 3894 (in Chinese) [于春雷, 戴世勋, 周刚, 张军杰, 胡丽丽, 姜中宏 2005 物理学报 54 3894]

    [24]

    Han L, Song F, Zou C G, Su J, Yan L H, Tian J G, Zhang G Y 2007 Acta Phys. Sin. 56 4187 (in Chinese) [韩琳, 宋峰, 邹昌光, 苏静, 闫立华, 田建国, 张光寅 2007 物理学报 56 4187]

    [25]

    Tang S, Huang M L, Wang J L, Yu F D, Shang G L, Wu J H 2012 J. Alloys Compd. 513 474

    [26]

    Murakami S, Herren M, Rau D, Morita M 2000 Inorg. Chim. Acta 300 1014

    [27]

    Fujii T, Kodaira K, Kawauchi O 1997 J. Phys. Chem. B 101 10631

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2961
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 修回日期:  2014-03-31
  • 刊出日期:  2014-07-05

水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响

  • 1. 北京交通大学, 发光与光信息技术教育部重点实验室, 北京交通大学光电子技术研究所, 北京 100044
    基金项目: 

    国家自然科学基金(批准号:61078069,10979009)、教育部新世纪优秀人才支持计划(批准号:12-0177)和中央高校基本科研业务费专项资金(批准号:2010JBZ006,2013YJS090)资助的课题.

摘要: 采用共沉淀法制备了EuVO4@YVO4核壳结构纳米颗粒,然后用聚电解质聚苯乙烯磺酸钠对其进行包覆和保护,并在200 ℃下对样品水热处理0–48 h. 在水热处理48 h后,样品的发光强度增强了约5倍,平均发光寿命由0.410 ms延长至0.579 ms. 对样品的发光衰减曲线的拟合、分析为Eu3+的扩散提供了有力的证据. 这种自内而外的扩散降低了样品核心中Eu3+的局域浓度,削弱了浓度猝灭效应,同时又能够避免表面猝灭效应的发生,从而使得样品的发光寿命变长、发光效率迅速提升.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回