搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质环境对铜丝电爆炸制备纳米粉体的影响

彭楚才 王金相 刘林林

引用本文:
Citation:

介质环境对铜丝电爆炸制备纳米粉体的影响

彭楚才, 王金相, 刘林林

Effect of medium on nanopowders prepared by Cu wire electrical explosion

Peng Chu-Cai, Wang Jin-Xiang, Liu Lin-Lin
PDF
导出引用
  • 为了探究介质环境对电爆炸制备纳米粉体的影响, 搭建了相应的电爆炸实验平台, 以铜丝为例分别在水和不同空气压力下开展了电爆炸制备纳米粉体实验.通过Rogoswki线圈和高压探头分别测试了电爆炸过程中的电流和电压波形图.通过电压、电流及能量沉积特征分析了电爆炸的基本过程以及介质环境在电爆炸过程中的作用.运用透射电子显微镜对爆炸产物进行了粒度分析.研究发现, 介质环境对于电爆炸过程的影响主要表现在汽化化阶段以后, 包括介质对蒸汽膨胀的抑制作用, 介质的电离对于铜丝表面击穿的影响以及其对高温金属蒸汽及等离子体的冷却作用.水中铜丝电爆炸能够制备局部均匀的小尺寸纳米粉体, 粒度多数集中在10–20 nm之间, 但粉体易积聚, 且整体粒度跨越较大.空气中制备的粉体分散良好, 符合对数正态分布, 基本上分布于20–100 nm之间, 平均粒度约为40 nm.
    To analyze the influence of environmental media on nanopowders prepared by electrical explosion method, electrical explosion experiment is carried out using copper wire under water and different air pressures. Voltage and current waveforms are measured by Rogowski coil and high-voltage probe. The basic process of electrical explosion and the function of environmental media in the course of electrical explosion are analyzed by combined characters of the voltage, current, and energy deposition. The particle size of explosive products is analyzed by transmission electron microscopy. Results show that it is mainly after the vaporization stage of the copper wires that the medium may affect the formation of the products. Effects of the medium on the electric explosion of metal wires include the restriction of the medium on the expansion of the metal vapor, the influence of the medium ionization on breakdown of the copper surface as well as the cooling of the copper vapor and the plasma. For the water medium, the diameter of the products distributes in a wide range but is mainly in the range about 10 to 20 nm, while in the air medium, the average particle size is about 40 nm, basically ranging from 20 to 100 nm.
    • 基金项目: 国家自然科学基金(批准号: 11272158)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272158).
    [1]

    Wu C Y, Deng J J, Hao S R, Wang M H, Han W H, Zhang N C, Yang Y 2005 High Power Laser And Particle Beams 17 1753 (in Chinese) [伍友成, 邓建军, 郝世荣, 王敏华, 韩文辉, 张南川, 杨宇 2005 强激光与粒子束 17 1753]

    [2]

    Bac L H, Kim J S, Kim J C 2010 Res Chem Intermed 36 795

    [3]

    Li S W, Feng G Y, Li W, Han J H, Zhou C Y, Yin J J, Yang C, Zhou S H 2012 Acta Phy. Sin. 61 225206 (in Chinese) [李世文, 冯国英, 李玮, 韩敬华, 周晟阳, 殷家家, 杨超, 周寿桓 2012 物理学报 61 225206]

    [4]

    Ishihara S, Koishi T, Orikawa T, Suematsu H, Nakayama T, Suzuki T, Niihara K 2012 Intermetallics 23 134

    [5]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [6]

    Antony J K, Vasa N J, Chakravarthy S R, Sarathi R 2010 Journal of Quantitative Spectroscopy & Radiative Transfer 111 2509

    [7]

    Ishihara S, Shikoda Y, Tokoi Y, Nakayama T, Suematsu H, Suzuki T, Jiang W H, Niihara K 2011 Scripta Materialia 64 110

    [8]

    Zhao J P, Zhang Q G, Zhou Q, Yan W Y, Qiu A C 2012 High Power Laser And Particle Beams 24 544 (in Chinese) [赵军平, 张乔根, 周庆, 燕文宇 2012 强激光与离子束 24 544]

    [9]

    Lee Y S, Bora B, Yap S L, Wong C S, Bhuyan H, Favre M 2012 Powder Technology 222 95

    [10]

    Bora B, Wong C S, Bhuyan H, Lee Y S, Yap S L, Favre M 2013 Journal of Quantitative Spectroscopy & Radiative Transfer 117 1

    [11]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 High Voltage Engineering 37 369 (in Chinese) [周庆, 张乔根, 张俊, 赵军平, 任保忠, 庞磊 2011 高电压技术 37 369]

    [12]

    Wall D P, Allen J E, Molokov S 2005 Applied Physics 98 023304

    [13]

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [毛志国 2009 博士学位论文 (北京: 清华大学)]

    [14]

    Yan W Y, Zhang Q G, Zhao J P, Liu L C 2014 High Power Laser And Particle Beams 26 259 (in Chinese) [燕文宇, 张乔根, 赵军平, 刘隆晨 2014 强激光与离子束 26 259]

    [15]

    Shen Q G, Fang Y, Zhou Z C, Wang D Z 2012 High Voltage Engineering(Beijing: China Electric Power Press) p66-68 (in Chinese) [沈其工, 方瑜, 周泽存, 王大忠 2012 高电压技术都 (北京: 中国电力出版社) 第66–68页]

    [16]

    Cao G Z, Wang Y (translated by Dong X L) 2012 Nanostructures and Nanomaterials: Synthesis, Properties, and Applications 2nd Edition (Beijing: Higher Education Press) p41-49 (in Chinese) [曹国忠, 王颖著 (董星龙译) 2012 纳米结构与纳米材料: 合成, 性能及应用: 第2版 (北京: 高等教育出版社) 第41–49页]

  • [1]

    Wu C Y, Deng J J, Hao S R, Wang M H, Han W H, Zhang N C, Yang Y 2005 High Power Laser And Particle Beams 17 1753 (in Chinese) [伍友成, 邓建军, 郝世荣, 王敏华, 韩文辉, 张南川, 杨宇 2005 强激光与粒子束 17 1753]

    [2]

    Bac L H, Kim J S, Kim J C 2010 Res Chem Intermed 36 795

    [3]

    Li S W, Feng G Y, Li W, Han J H, Zhou C Y, Yin J J, Yang C, Zhou S H 2012 Acta Phy. Sin. 61 225206 (in Chinese) [李世文, 冯国英, 李玮, 韩敬华, 周晟阳, 殷家家, 杨超, 周寿桓 2012 物理学报 61 225206]

    [4]

    Ishihara S, Koishi T, Orikawa T, Suematsu H, Nakayama T, Suzuki T, Niihara K 2012 Intermetallics 23 134

    [5]

    Zou X B, Mao Z G, Wang X X, Jiang W H 2013 Chin. Phys. B 22 045206

    [6]

    Antony J K, Vasa N J, Chakravarthy S R, Sarathi R 2010 Journal of Quantitative Spectroscopy & Radiative Transfer 111 2509

    [7]

    Ishihara S, Shikoda Y, Tokoi Y, Nakayama T, Suematsu H, Suzuki T, Jiang W H, Niihara K 2011 Scripta Materialia 64 110

    [8]

    Zhao J P, Zhang Q G, Zhou Q, Yan W Y, Qiu A C 2012 High Power Laser And Particle Beams 24 544 (in Chinese) [赵军平, 张乔根, 周庆, 燕文宇 2012 强激光与离子束 24 544]

    [9]

    Lee Y S, Bora B, Yap S L, Wong C S, Bhuyan H, Favre M 2012 Powder Technology 222 95

    [10]

    Bora B, Wong C S, Bhuyan H, Lee Y S, Yap S L, Favre M 2013 Journal of Quantitative Spectroscopy & Radiative Transfer 117 1

    [11]

    Zhou Q, Zhang Q G, Zhang J, Zhao J P, Ren B Z, Pang L 2011 High Voltage Engineering 37 369 (in Chinese) [周庆, 张乔根, 张俊, 赵军平, 任保忠, 庞磊 2011 高电压技术 37 369]

    [12]

    Wall D P, Allen J E, Molokov S 2005 Applied Physics 98 023304

    [13]

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [毛志国 2009 博士学位论文 (北京: 清华大学)]

    [14]

    Yan W Y, Zhang Q G, Zhao J P, Liu L C 2014 High Power Laser And Particle Beams 26 259 (in Chinese) [燕文宇, 张乔根, 赵军平, 刘隆晨 2014 强激光与离子束 26 259]

    [15]

    Shen Q G, Fang Y, Zhou Z C, Wang D Z 2012 High Voltage Engineering(Beijing: China Electric Power Press) p66-68 (in Chinese) [沈其工, 方瑜, 周泽存, 王大忠 2012 高电压技术都 (北京: 中国电力出版社) 第66–68页]

    [16]

    Cao G Z, Wang Y (translated by Dong X L) 2012 Nanostructures and Nanomaterials: Synthesis, Properties, and Applications 2nd Edition (Beijing: Higher Education Press) p41-49 (in Chinese) [曹国忠, 王颖著 (董星龙译) 2012 纳米结构与纳米材料: 合成, 性能及应用: 第2版 (北京: 高等教育出版社) 第41–49页]

计量
  • 文章访问数:  1872
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-08
  • 修回日期:  2014-10-22
  • 刊出日期:  2015-04-05

介质环境对铜丝电爆炸制备纳米粉体的影响

  • 1. 南京理工大学瞬态物理重点实验室, 南京 210094
    基金项目: 

    国家自然科学基金(批准号: 11272158)资助的课题.

摘要: 为了探究介质环境对电爆炸制备纳米粉体的影响, 搭建了相应的电爆炸实验平台, 以铜丝为例分别在水和不同空气压力下开展了电爆炸制备纳米粉体实验.通过Rogoswki线圈和高压探头分别测试了电爆炸过程中的电流和电压波形图.通过电压、电流及能量沉积特征分析了电爆炸的基本过程以及介质环境在电爆炸过程中的作用.运用透射电子显微镜对爆炸产物进行了粒度分析.研究发现, 介质环境对于电爆炸过程的影响主要表现在汽化化阶段以后, 包括介质对蒸汽膨胀的抑制作用, 介质的电离对于铜丝表面击穿的影响以及其对高温金属蒸汽及等离子体的冷却作用.水中铜丝电爆炸能够制备局部均匀的小尺寸纳米粉体, 粒度多数集中在10–20 nm之间, 但粉体易积聚, 且整体粒度跨越较大.空气中制备的粉体分散良好, 符合对数正态分布, 基本上分布于20–100 nm之间, 平均粒度约为40 nm.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回