搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受限胶体液滴蒸发过程中胶体颗粒沉积过程观察

吴赛 李伟斌 石峰 蒋世春 蓝鼎 王育人

受限胶体液滴蒸发过程中胶体颗粒沉积过程观察

吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人
PDF
导出引用
导出核心图
  • 亲水玻璃基片在掩模板的保护下, 通过喷涂超疏水层, 得到了被疏水层包围的圆形亲水区域. 胶体液滴在这一区域被很好地限制, 并且液滴体积可以在较大范围内变化, 体积的变化可以改变液滴与基片的表观接触角. 通过显微观察手段原位观察了表观接触角为疏水的受限胶体液滴蒸发过程中粒子沉积行为. 在整个蒸发过程中, 受限液滴边界被钉扎在亲疏水交界处. 粒子沉积过程中, 驱动粒子的液滴内部流动会发生变化. 粒子沉积图案形成过程由三种流体行为控制, 最初, Marangoni效应占主导作用, 驱动粒子在液滴表面聚集, 随之沉积到液滴边缘; 随着蒸发进行, 当接触角变小(<60°)时, 由于边界蒸发速度更快导致的毛细补偿流使得粒子直接向边界沉积. 在干燥的最后阶段, 亲水区域内的液层变得很薄, 只有一单层粒子存在于这一薄液层中, 蒸发继续进行时, 薄液层发生失稳使得粒子迅速聚集而形成网络化图案, 由于粒子间距变小, 球间的液桥毛细力也会参与到这一聚集过程中.
    • 基金项目: 国家自然科学基金(批准号: 11202209)和中国科学院战略性先导科技专项(A类)(批准号: XDA04020202, XDA04020406)资助的课题.
    [1]

    Norris D J, Arlinghaus E G, Meng L, Heiny R, Scriven L 2004 Adv. Mater. 16 1393

    [2]

    Zhang J, Sun Z, Yang B 2009 Curr. Opin. Colloid Interface Sci. 14 103

    [3]

    Pham H H, Gourevich I, Oh J K, Jonkman J E, Kumacheva E 2004 Adv. Mater. 16 516

    [4]

    Velev O D, Kaler E W 2000 Adv. Mater. 12 531

    [5]

    Velev O D, Kaler E W 1999 Langmuir 15 3693

    [6]

    Luo X, Morrin A, Killard A J, Smyth M R 2006 Electroanalysis 18 319

    [7]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2003 Adv. Mater. 15 1025

    [8]

    Fan F, Stebe K J 2004 Langmuir 20 3062

    [9]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2004 Langmuir 20 9114

    [10]

    Reynolds T D, Kalpathy S K, Kumar S, Francis L F 2010 J. Colloid Interface Sci. 352 202

    [11]

    Singh G, Pillai S, Arpanaei A, Kingshott P 2011 Nanotechnology 22 225601

    [12]

    Yu Y X, Jin L 2008 J. Chem. Phys. 128 014901

    [13]

    Yu Y X, You F Q, Tang Y P, Gao G H, Li Y G 2006 J. Phys. Chem. B 110 334

    [14]

    You F Q, Yu Y X, Gao G H 2005 J. Chem. Phys. 123 114705

    [15]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 物理学报 62 214207]

    [16]

    Yu Y X, Tian A W, Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [18]

    Deegan R D 2000 Phys. Rev. E 61 475

    [19]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [20]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 物理学报 62 196102]

    [21]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [22]

    Xia Y N, Yin Y D, Lu Y, McLellan J 2003 Adv. Funct. Mater. 13 907

    [23]

    Yin Y D, Lu Y, Gates B, Xia Y N 2001 J. Am. Chem. Soc. 123 8718

    [24]

    Hu H, Larson R G 2005 Langmuir 21 3963

    [25]

    Hu H, Larson R G 2005 Langmuir 21 3972

    [26]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [27]

    Xu X, Luo J 2007 Appl. Phys. Lett. 91 124102

    [28]

    Uno K, Hayashi K, Hayashi T, Ito K, Kitano H 1998 Colloid. Polym. Sci. 276 810

    [29]

    Hu H, Larson R G 2002 J. Phys. Chem. B 106 1334

    [30]

    Guena G, Poulard C, Cazabat A M 2007 Colloid J. 69 1

    [31]

    Nguyen T A H, Hampton M A, Nguyen A V 2013 J. Phys. Chem. C 117 4707

    [32]

    Adachi E, Dimitro A S, Nagayama K 1995 Langmuir 11 1057

    [33]

    Bhardwaj R, Fang X, Attinger D 2009 New J. Chem. 11 075020

    [34]

    Lu K Q, Liu J X 2006 Soft Material Physics Introduction (Beijing: Peking University Press) p250 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论(北京: 北京大学出版社)第250页]

    [35]

    Langmuir I 1912 Phys. Rev. 12 368

    [36]

    Cai Y, Zhang Newby B 2008 J. Am. Chem. Soc. 130 6076

    [37]

    Nikolov A D, Wasan D T 2009 Ind. Eng. Chem. Res. 48 2320

    [38]

    Marín á G, Gelderblom H, Lohse D, Snoeijer J H 2011 Phys. Rev. Lett. 107 085502

    [39]

    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K 1992 Langmuir 8 3183

    [40]

    Kralchevsky P A, Denkov N D, Paunov V N, Velev O D, Ivanov I B, Yoshimura H, Nagayama K 1994 J. Phys-condens. Mat. 6 395

  • [1]

    Norris D J, Arlinghaus E G, Meng L, Heiny R, Scriven L 2004 Adv. Mater. 16 1393

    [2]

    Zhang J, Sun Z, Yang B 2009 Curr. Opin. Colloid Interface Sci. 14 103

    [3]

    Pham H H, Gourevich I, Oh J K, Jonkman J E, Kumacheva E 2004 Adv. Mater. 16 516

    [4]

    Velev O D, Kaler E W 2000 Adv. Mater. 12 531

    [5]

    Velev O D, Kaler E W 1999 Langmuir 15 3693

    [6]

    Luo X, Morrin A, Killard A J, Smyth M R 2006 Electroanalysis 18 319

    [7]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2003 Adv. Mater. 15 1025

    [8]

    Fan F, Stebe K J 2004 Langmuir 20 3062

    [9]

    Fustin C -A, Glasser G, Spiess H W, Jonas U 2004 Langmuir 20 9114

    [10]

    Reynolds T D, Kalpathy S K, Kumar S, Francis L F 2010 J. Colloid Interface Sci. 352 202

    [11]

    Singh G, Pillai S, Arpanaei A, Kingshott P 2011 Nanotechnology 22 225601

    [12]

    Yu Y X, Jin L 2008 J. Chem. Phys. 128 014901

    [13]

    Yu Y X, You F Q, Tang Y P, Gao G H, Li Y G 2006 J. Phys. Chem. B 110 334

    [14]

    You F Q, Yu Y X, Gao G H 2005 J. Chem. Phys. 123 114705

    [15]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 物理学报 62 214207]

    [16]

    Yu Y X, Tian A W, Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423

    [17]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827

    [18]

    Deegan R D 2000 Phys. Rev. E 61 475

    [19]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 2000 Phys. Rev. E 62 756

    [20]

    Zhang W B, Liao L G, Yu T X, Ji A L 2013 Acta Phys. Sin. 62 196102 (in Chinese) [张文彬, 廖龙光, 于同旭, 纪爱玲 2013 物理学报 62 196102]

    [21]

    Weon B M, Je J H 2013 Phys. Rev. Lett. 110 028303

    [22]

    Xia Y N, Yin Y D, Lu Y, McLellan J 2003 Adv. Funct. Mater. 13 907

    [23]

    Yin Y D, Lu Y, Gates B, Xia Y N 2001 J. Am. Chem. Soc. 123 8718

    [24]

    Hu H, Larson R G 2005 Langmuir 21 3963

    [25]

    Hu H, Larson R G 2005 Langmuir 21 3972

    [26]

    Hu H, Larson R G 2006 J. Phys. Chem. B 110 7090

    [27]

    Xu X, Luo J 2007 Appl. Phys. Lett. 91 124102

    [28]

    Uno K, Hayashi K, Hayashi T, Ito K, Kitano H 1998 Colloid. Polym. Sci. 276 810

    [29]

    Hu H, Larson R G 2002 J. Phys. Chem. B 106 1334

    [30]

    Guena G, Poulard C, Cazabat A M 2007 Colloid J. 69 1

    [31]

    Nguyen T A H, Hampton M A, Nguyen A V 2013 J. Phys. Chem. C 117 4707

    [32]

    Adachi E, Dimitro A S, Nagayama K 1995 Langmuir 11 1057

    [33]

    Bhardwaj R, Fang X, Attinger D 2009 New J. Chem. 11 075020

    [34]

    Lu K Q, Liu J X 2006 Soft Material Physics Introduction (Beijing: Peking University Press) p250 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论(北京: 北京大学出版社)第250页]

    [35]

    Langmuir I 1912 Phys. Rev. 12 368

    [36]

    Cai Y, Zhang Newby B 2008 J. Am. Chem. Soc. 130 6076

    [37]

    Nikolov A D, Wasan D T 2009 Ind. Eng. Chem. Res. 48 2320

    [38]

    Marín á G, Gelderblom H, Lohse D, Snoeijer J H 2011 Phys. Rev. Lett. 107 085502

    [39]

    Denkov N, Velev O, Kralchevski P, Ivanov I, Yoshimura H, Nagayama K 1992 Langmuir 8 3183

    [40]

    Kralchevsky P A, Denkov N D, Paunov V N, Velev O D, Ivanov I B, Yoshimura H, Nagayama K 1994 J. Phys-condens. Mat. 6 395

  • [1] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [2] 李永强, 刘玲, 张晨辉, 段俐, 康琦. 微重力环境下无限长柱体内角毛细流动解析近似解研究. 物理学报, 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [3] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [4] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [5] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [6] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响. 物理学报, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [7] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [8] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [9] 王飞, 彭岚, 张全壮, 刘佳. 水平温差对环形浅液池内Marangoni-热毛细对流的影响. 物理学报, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [10] 何峰, 王志军, 黄义辉, 叶鹏, 王锦程. 存在液膜的毛细蒸发过程研究. 物理学报, 2013, 62(24): 246401. doi: 10.7498/aps.62.246401
    [11] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固. 物理学报, 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [12] 何博, 何浩波, 丰松江, 聂万胜. 液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究. 物理学报, 2012, 61(14): 148201. doi: 10.7498/aps.61.148201
    [13] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [14] 陈俊, 沈超群, 王贺, 张程宾. 液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性. 物理学报, 2019, 68(7): 074701. doi: 10.7498/aps.68.20181295
    [15] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [16] 刘中强, 甘孔银, 李英骏, 姜素蓉. 方波电泳电场驱动下液膜马达的电致流动特征. 物理学报, 2012, 61(13): 134703. doi: 10.7498/aps.61.134703
    [17] 高向阳, 郑长卿, 赵晓鹏. 电流变液泊肃叶流动的分子动力学模拟. 物理学报, 2000, 49(2): 272-276. doi: 10.7498/aps.49.272
    [18] 赵晓鹏, 高秀敏, 高向阳, 郜丹军. 固液双相电流变系统流动过程的相转变特性. 物理学报, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [19] 赵晓鹏, 郜丹军. 考虑多颗粒近程相互作用的电流变液泊肃叶流动行为. 物理学报, 2001, 50(6): 1115-1120. doi: 10.7498/aps.50.1115
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
  • 引用本文:
    Citation:
计量
  • 文章访问数:  778
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-06
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-05-05

受限胶体液滴蒸发过程中胶体颗粒沉积过程观察

  • 1. 天津大学材料科学与工程学院, 天津 300072;
  • 2. 中国科学院力学研究所, 微重力重点实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 11202209)和中国科学院战略性先导科技专项(A类)(批准号: XDA04020202, XDA04020406)资助的课题.

摘要: 亲水玻璃基片在掩模板的保护下, 通过喷涂超疏水层, 得到了被疏水层包围的圆形亲水区域. 胶体液滴在这一区域被很好地限制, 并且液滴体积可以在较大范围内变化, 体积的变化可以改变液滴与基片的表观接触角. 通过显微观察手段原位观察了表观接触角为疏水的受限胶体液滴蒸发过程中粒子沉积行为. 在整个蒸发过程中, 受限液滴边界被钉扎在亲疏水交界处. 粒子沉积过程中, 驱动粒子的液滴内部流动会发生变化. 粒子沉积图案形成过程由三种流体行为控制, 最初, Marangoni效应占主导作用, 驱动粒子在液滴表面聚集, 随之沉积到液滴边缘; 随着蒸发进行, 当接触角变小(<60°)时, 由于边界蒸发速度更快导致的毛细补偿流使得粒子直接向边界沉积. 在干燥的最后阶段, 亲水区域内的液层变得很薄, 只有一单层粒子存在于这一薄液层中, 蒸发继续进行时, 薄液层发生失稳使得粒子迅速聚集而形成网络化图案, 由于粒子间距变小, 球间的液桥毛细力也会参与到这一聚集过程中.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回