搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究

王胜 李航 曹超 吴洋 霍合勇 唐彬

引用本文:
Citation:

新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究

王胜, 李航, 曹超, 吴洋, 霍合勇, 唐彬

Optimal calculation of detection efficiency for thermal neutron sensitive microchannel plate

Wang Sheng, Li Hang, Cao Chao, Wu Yang, Huo He-Yong, Tang Bin
PDF
导出引用
  • 基于microchannel plates (MCP)的中子探测技术近年来发展迅速, 因其具有较高的空间分辨率和中子探测效率以及优异的时间分辨能力, 可用于高分辨率中子照相和能量选择中子成像. 本文利用蒙特-卡罗(MC)程序, 对栅格为15 μm的热中子敏感MCP板进行MC模拟计算, 获得了不同几何结构和材料组成情况下, 掺杂型和镀膜型热中子敏感MCP板的探测效率. 计算结果表明, 增加中子敏感材料的比例可以获得更高的中子阻挡效率, 但同时也加大了次级粒子发射进入MCP板通道的难度, 掺杂型MCP 板的通道直径和镀膜型MCP板的镀膜厚度均存在最优值. MCP板厚度为0.4 mm时, 对10B2O3材料, 掺杂型MCP板的热中子探测效率可以超过40%, 镀膜型MCP板的热中子探测效率可以接近60%.
    The traditional digital imaging of neutron radiography is based on neutron scintillation screen cooperated with charge coupled device (CCD) camera, whose spatial resolution and neutron detection efficiency are contradictory. Neutron detection method based on microchannel plates (MCP) could solve the problem appearing in traditional method. It could supply high spatial resolution, high neutron detection efficiency and high time resolution. It is of benefit to high-resolution neutron radiography and neutron energy choice imaging. Tremsin et al. [Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340] calculated the detection efficiency of thermal neutron sensitivity MCP in 2004. Then his team fabricated a prototype of neutron detection system based on MCP and carried out the neutron imaging experiments on several neutron sources. The experimental results show that spatial resolution is nearly 15 μm and neutron detection efficiency for cold neutron is more than 70%. In China, Yang Y G et al.[15] from Tsinghua University developed a neutron detection system based on MCP, and preliminary neutron experimental results indicate that spatial resolution is about 200 μm.#br#In order to find the optimal structure of MCP, in this paper we calculate the detection efficiency of thermal neutron sensitive MCP doped (or coated) by boron and gadolinium with Monte-Carlo method. The neutron detection efficiency P is determined by three terms P1, P2 and P3, which are related by P=P1× P2× P3. Here, P1 is the possibility that the neutrons are absorbed by MCP solid parts, P2 is the possibility that the secondary particle escapes into MCP channel and generates an electron avalanche, and P3 is the possibility that the electron avalanch is recorded by readout system. Theoretical analysis indicates that more solid parts of MCP can make P1 higher and increase the difficulty for secondary particle to escape, and make P2 lower. There may be an optimal geometry to make the total P maximal. This paper gives the calculation method of P1 and P2, and approximates P3 to 1. #br#The calculation results show that the neutron detection efficiency depends on channel diameter (or coated thickness) and material, but not on the structure of MCP. When the thickness of MCP is 0.4 mm, the pixel of MCP is 15 μm, and the neutron sensitivity material is 10B2O3, the optimal thermal neutron detection efficiency is more than 40% with a channel diameter of 8.0 μm for the doped MCP, and it is nearly 60% with a coated thickness of 1.5 μm for the coated MCP. With the same geometry parameters and the neutron sensitive material such as natural Gd2O3, the optimal thermal neutron detection efficiency is more than 30% with a channel diameter of 9.0 μm for the doped MCP, and it is more than 50% with a coated thickness of 0.5 μm for the coated MCP.
    • 基金项目: 中国工程物理研究院科学基金(批准号: 2014B0103007)、中国工程物理研究院中子物理学重点实验室基金(批准号: 2013CB01, 2012BB03)和国家自然基金(批准号: 11205138, 11375156) 资助的课题.
    • Funds: Project supported by the National High Technology Research and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2014B0103007), the Fund of Key Laboratory of Neutron Physics, China (Grant Nos. 2013CB01, 2012BB03) and the National Natural Science Foundation of China (Grant Nos. 11205138, 11375156).
    [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 物理学报 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

  • [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 物理学报 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

计量
  • 文章访问数:  2161
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-11-03
  • 刊出日期:  2015-05-05

新型热中子敏感微通道板探测效率的蒙特-卡罗模拟研究

  • 1. 中国工程物理研究院核物理与化学研究所, 绵阳 621900
    基金项目: 

    中国工程物理研究院科学基金(批准号: 2014B0103007)、中国工程物理研究院中子物理学重点实验室基金(批准号: 2013CB01, 2012BB03)和国家自然基金(批准号: 11205138, 11375156) 资助的课题.

摘要: 基于microchannel plates (MCP)的中子探测技术近年来发展迅速, 因其具有较高的空间分辨率和中子探测效率以及优异的时间分辨能力, 可用于高分辨率中子照相和能量选择中子成像. 本文利用蒙特-卡罗(MC)程序, 对栅格为15 μm的热中子敏感MCP板进行MC模拟计算, 获得了不同几何结构和材料组成情况下, 掺杂型和镀膜型热中子敏感MCP板的探测效率. 计算结果表明, 增加中子敏感材料的比例可以获得更高的中子阻挡效率, 但同时也加大了次级粒子发射进入MCP板通道的难度, 掺杂型MCP 板的通道直径和镀膜型MCP板的镀膜厚度均存在最优值. MCP板厚度为0.4 mm时, 对10B2O3材料, 掺杂型MCP板的热中子探测效率可以超过40%, 镀膜型MCP板的热中子探测效率可以接近60%.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回