搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ka波段带状注相对论扩展互作用速调管放大器的分析与设计

刘振帮 赵欲聪 黄华 金晓 雷禄容

引用本文:
Citation:

Ka波段带状注相对论扩展互作用速调管放大器的分析与设计

刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容

Analysis and design of a Ka-band sheet beam relativistic extended interaction klystron amplifier

Liu Zhen-Bang, Zhao Yu-Cong, Huang Hua, Jin Xiao, Lei Lu-Rong
PDF
导出引用
  • 带状注相对论扩展互作用速调管放大器是一种高功率、高频率的微波毫米波放大型器件, 具有广阔的应用前景. 本文分析了扩展互作用结构多间隙谐振腔的渡越时间效应, 推导了2π模场情况下谐振腔的能量交换系数和电子负载电导, 且通过计算表明工作在2π模式三间隙腔的电子负载电导是单间隙腔的9倍左右, 多间隙结构有利于提高器件效率. 利用三维粒子仿真软件, 对工作在Ka波段的带状注相对论扩展互作用速调管放大器进行了模拟研究, 采用宽高比为30:1的带状电子束以降低空间电荷效应, 在电子束电压为500 kV, 束流为1 kA, 轴向引导磁感应强度为0.8 T的情况下, 器件输出微波功率为190 MW, 频率为40 GHz, 器件效率为38%, 器件增益为69 dB.
    The sheet beam klystron is a kind of novel powerful microwave and millimeter-wave vacuum electron device, in which used is a thin rectangular sheet beam with high aspect ratio in order to improve beam-wave interaction efficiency by improving space-charge-limiting current of electron beam and obtaining big electric current, and it has many actual and potential applications. Based on the motion of the single electron under the small signal condition, the transit-time effect of electron beam in 2π-mode standing wave electric field in a multiple-cavity resonator is investigated, the expression of electron load conductance in a multiple-cavity resonator is presented, and the influence of the cavity number N on transit-time effect in a multiple-cavity resonator is discussed. The high frequency characteristics of the three-gap extended cavity are studied. The abilities for the single-gap cavity and three-gap cavity to modulate the sheet beam are compared by 3D PIC simulation. The simulation result shows that the three-gap extended interaction cavity operating at 2πmode is better than the single-gap cavity. The electron load conductance is derived and corrected based on the theory of relativity, by which a more accurate relation of electron load conductance to transmit angle can be obtained. In order to improve the output power and electron efficiency, the three-gap extended output cavity is used in the relativistic klystron to replace the single gap output cavity. By using the electromagnetic simulation software and 3D PIC code, a Ka-band sheet beam relativistic extended interaction klystron amplifie is designed. A sheet electron beam with a width-to-height ratio of 30 is adopted to reduce the space charge effect. In the PIC simulation, when the beam voltage is 500 kV and current is 1 kA, the device can generate a 190 MW output power at 40 GHz with an efficiency of 38% and a gain of 69 dB. The 3 dB bandwidth of the EISBK is about 150 MHz. Meanwhile, the output microwave is without the clutter jamming, which makes the contribution avoid the shrinkage of output microwave impulse. This study is of great importance for the physical design and process in engineering of the Ka-band sheet beam extended interaction relativistic klystron amplifier.
    • 基金项目: 国家自然科学基金(批准号: 11475158)、高功率微波技术重点实验室基金(批准号: HAK-2014HPM-05)和中国物理研究院科学发展基金(批准号: 2014B0402068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475158), the Science Foundation of Science and Technology on High Power Microwave Laboratory, China (Grant No. HAK-2014HPM-05), and the Science Foundation of China Academy of Engineering Physics (Grant No. 2014B0402068).
    [1]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35-92 (in Chinese) [Benford J, Swegle J A 2008 高功率微波(第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社)第35-92页]

    [2]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (translated by group of High Power Microwave Sources and Technologies) (Beijing: Tsinghua University Press) pp57-63 (in Chinese) [Robert J B, Edl S 2005高功率微波源与技术(中译本) (高功率微波源与技术翻译组译) (北京: 清华大学出版社)第57-63页]

    [3]

    Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Dev. 52 895

    [4]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [5]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [6]

    Ding Y G 2010 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp57-60 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟(北京: 国防科技工业出版社) 第57-60页]

    [7]

    Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402

    [8]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Dev. 56 3196

    [9]

    Fan Z K, Liu Q X, Liu X S 1999 High Power Laser Particle Beams 11 482 (in Chinese) [范植开, 刘庆想, 刘锡三 1999 强激光与粒子束 11 482]

    [10]

    Xie J L, Zhao Y X 1996 Bunching Theory of Klystron (Beijing: Science Press) pp63-70, 73-75, 206-208 (in Chinese) [谢家麟, 赵永翔1996 速调管群聚理论(北京: 科学出版社) 第63-70, 73-75, 206-208页]

    [11]

    Polevin S D, Korovin S D, Kovalchuk B M, Karlik K V 2004 Proceedings of 13th International Symposium on High Current Electronics 13 246

  • [1]

    Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35-92 (in Chinese) [Benford J, Swegle J A 2008 高功率微波(第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社)第35-92页]

    [2]

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (translated by group of High Power Microwave Sources and Technologies) (Beijing: Tsinghua University Press) pp57-63 (in Chinese) [Robert J B, Edl S 2005高功率微波源与技术(中译本) (高功率微波源与技术翻译组译) (北京: 清华大学出版社)第57-63页]

    [3]

    Roitman A, Berry D, Steer B 2005 IEEE Trans. Electron Dev. 52 895

    [4]

    Liu L W, Wei Y Y, Wang S M 2013 Chin. Phys. B 22 108401

    [5]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [6]

    Ding Y G 2010 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp57-60 (in Chinese) [丁耀根 2008 大功率速调管的理论与设计模拟(北京: 国防科技工业出版社) 第57-60页]

    [7]

    Zhang K C, Wu Z H, Liu S G 2008 Chin. Phys. B 17 3402

    [8]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Dev. 56 3196

    [9]

    Fan Z K, Liu Q X, Liu X S 1999 High Power Laser Particle Beams 11 482 (in Chinese) [范植开, 刘庆想, 刘锡三 1999 强激光与粒子束 11 482]

    [10]

    Xie J L, Zhao Y X 1996 Bunching Theory of Klystron (Beijing: Science Press) pp63-70, 73-75, 206-208 (in Chinese) [谢家麟, 赵永翔1996 速调管群聚理论(北京: 科学出版社) 第63-70, 73-75, 206-208页]

    [11]

    Polevin S D, Korovin S D, Kovalchuk B M, Karlik K V 2004 Proceedings of 13th International Symposium on High Current Electronics 13 246

计量
  • 文章访问数:  1817
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-29
  • 修回日期:  2014-11-28
  • 刊出日期:  2015-05-05

Ka波段带状注相对论扩展互作用速调管放大器的分析与设计

  • 1. 中国工程物理研究院应用电子学研究所, 高功率微波技术重点实验室, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号: 11475158)、高功率微波技术重点实验室基金(批准号: HAK-2014HPM-05)和中国物理研究院科学发展基金(批准号: 2014B0402068)资助的课题.

摘要: 带状注相对论扩展互作用速调管放大器是一种高功率、高频率的微波毫米波放大型器件, 具有广阔的应用前景. 本文分析了扩展互作用结构多间隙谐振腔的渡越时间效应, 推导了2π模场情况下谐振腔的能量交换系数和电子负载电导, 且通过计算表明工作在2π模式三间隙腔的电子负载电导是单间隙腔的9倍左右, 多间隙结构有利于提高器件效率. 利用三维粒子仿真软件, 对工作在Ka波段的带状注相对论扩展互作用速调管放大器进行了模拟研究, 采用宽高比为30:1的带状电子束以降低空间电荷效应, 在电子束电压为500 kV, 束流为1 kA, 轴向引导磁感应强度为0.8 T的情况下, 器件输出微波功率为190 MW, 频率为40 GHz, 器件效率为38%, 器件增益为69 dB.

English Abstract

参考文献 (11)

目录

    /

    返回文章
    返回