搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最小可分辨气体浓度的等效测试评价方法

李家琨 王霞 金伟其 张旭

引用本文:
Citation:

最小可分辨气体浓度的等效测试评价方法

李家琨, 王霞, 金伟其, 张旭

Equivalent-measurement evaluation method of minimum resolvable gas concentration

Li Jia-Kun, Wang Xia, Jin Wei-Qi, Zhang Xu
PDF
导出引用
  • 最小可分辨气体浓度(MRGC)是最新提出的一种客观评价气体泄漏红外成像检测系统的性能参数, 但MRGC测试系统较为复杂. 本文首先推导建立了MRGC的数学模型, 然后在比较MRGC与常规热成像系统的最小可分辨温差(MRTD)性能参数模型原理以及测试方法的基础上, 依据最小可分辨辐射响应差相等的条件, 提出了一种气体泄漏红外成像检测系统的MRGC等效测试评价方法, 并对乙烯气体进行了MRGC的直接测量与等效测试结果的比较. 结果表明两者具有较好的一致性, 是一种可行的普适测试方法. 由于等效测试法只需常规MRTD 测试结果及气体红外光谱数据库, 方法简单可靠, 具有推广应用价值, 对气体泄漏红外成像检测系统的研发和应用具有重要的意义.
    Currently, there is no standard method of evaluating the performance of the gas leak infrared imaging detection system. The evaluating criterions vary greatly and are deficient in aspects of completeness and accuracy, such as noise equivalent temperature difference, noise equivalent concentration path length, and minimum detectable leak rates. Minimum resolvable gas concentration (MRGC) is a latest proposed parameter for evaluating the performance of a passive gas leak infrared imaging detection system, which takes full advantage of the comprehensive evaluation capability of the temperature resolution and spatial resolution of the minimum resolvable temperature difference (MRTD) model. The MRGC takes into account the environmental and gas state parameters, the size of the gas plume and other factors which influence the MRGC measurement. However, the MRGC measurement system is complicated and many state parameters need to be controlled, especially the wide range and dedicated gas concentration meters are required. Therefore, the mathematical model of MRGC is derived and established. By comparing the principles and measurement methods of the performance parameters, MRGC and MRTD, a novel MRGC equivalent measurement evaluation method is proposed, on condition that the minimum resolvable radiation differences are equal. Using ethylene and ammonia as the target, the equivalently measured results of MRGC are obtained. The results show that the MRGC increases with the spatial frequency increasing and the smaller the temperature difference is between the gas and the background blackbody, the faster the MRGC increases. What is more, when the spatial frequency is fixed, MRGC increases with the gas temperature approaching to the background temperature. The background temperature varies asymptotically, which means that if the gas temperature equals the background temperature, the system cannot detect the gas four-bar pattern, no matter what the gas concentration is (here, the maximum gas concentration is 1 million ppm under normal pressure.). The directly measured and equivalently measured results of ethylene are in good agreement within errors of less than ±20%, and the maximum error is 18.26% at a spatial frequency of 0.214f0, which demonstrates the feasibility and effectiveness of the method. Because the equivalent measurement method only needs the traditional MRTD measurement results and the gas infrared spectrum database, it is simple and reliable, which is very significant for the study and application of the gas leak infrared imaging detection systems.
    • 基金项目: 北京市自然科学基金重点项目(批准号: 4121002)资助的课题.
    • Funds: Project supported by the Key Project of the Natural Science Foundation of Beijing, China (Grant No. 4121002).
    [1]

    Zhang J L, Nie H B, Wang Z B, Tian E M, Zhang H 2008 Journal of North University of China (Natural Science Edition) 29 265 (in Chinese) [张记龙, 聂宏斌, 王志斌, 田二明, 张辉 2008 中北大学学报(自然科学版) 29 265]

    [2]

    Liu X, Wang L X, Jin W Q, Wang X 2009 Infrared Technology 31 563 (in Chinese) [刘秀, 王岭雪, 金伟其, 王霞 2009 红外技术 31 563]

    [3]

    Samer S, Roland H, Peter R, Jens E, Axel K, Jörn H G 2012 Opt. Eng. 51 111717

    [4]

    Jonas S, Petter W, Hans E, Sune S 2000 Opt. Express 6 92

    [5]

    Edward N, Shankar B, Philippe B 2010 Proc. SPIE 7661 76610K

    [6]

    Nathan H, Robert T K, Christopher G M, Jeffrey A P, Paul D, Dave F, Paul S, Elizabeth A 2013 Proc. SPIE 8710 871005

    [7]

    Li J K 2015 Ph. D. Dissertation (in Chinese) [李家琨 2015 博士论文 (北京: 北京理工大学)]

    [8]

    Lloyd J M 1975 Thermal Imaging System (New York: Plenum Press)

    [9]

    Michael C, Dudzik 1993 The Infrared & Electro-Optical System Handbook (Vol. 4) (Bellingham: SPIE Optical Engineering Press) pp235-241

  • [1]

    Zhang J L, Nie H B, Wang Z B, Tian E M, Zhang H 2008 Journal of North University of China (Natural Science Edition) 29 265 (in Chinese) [张记龙, 聂宏斌, 王志斌, 田二明, 张辉 2008 中北大学学报(自然科学版) 29 265]

    [2]

    Liu X, Wang L X, Jin W Q, Wang X 2009 Infrared Technology 31 563 (in Chinese) [刘秀, 王岭雪, 金伟其, 王霞 2009 红外技术 31 563]

    [3]

    Samer S, Roland H, Peter R, Jens E, Axel K, Jörn H G 2012 Opt. Eng. 51 111717

    [4]

    Jonas S, Petter W, Hans E, Sune S 2000 Opt. Express 6 92

    [5]

    Edward N, Shankar B, Philippe B 2010 Proc. SPIE 7661 76610K

    [6]

    Nathan H, Robert T K, Christopher G M, Jeffrey A P, Paul D, Dave F, Paul S, Elizabeth A 2013 Proc. SPIE 8710 871005

    [7]

    Li J K 2015 Ph. D. Dissertation (in Chinese) [李家琨 2015 博士论文 (北京: 北京理工大学)]

    [8]

    Lloyd J M 1975 Thermal Imaging System (New York: Plenum Press)

    [9]

    Michael C, Dudzik 1993 The Infrared & Electro-Optical System Handbook (Vol. 4) (Bellingham: SPIE Optical Engineering Press) pp235-241

  • [1] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [2] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析. 物理学报, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [3] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [4] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究. 物理学报, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [5] 宋张勇, 于得洋, 蔡晓红. 康普顿相机的成像分辨分析与模拟. 物理学报, 2019, 68(11): 118701. doi: 10.7498/aps.68.20182245
    [6] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [7] 祝晓松, 张庆斌, 兰鹏飞, 陆培祥. 分子轨道高时空分辨成像. 物理学报, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [8] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [9] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [10] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [11] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [12] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [13] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究. 物理学报, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [14] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [15] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [16] 董富通, 王菲鹿, 仲佳勇, 赵刚. Fe离子M壳层不可分辨跃迁系不透明度研究. 物理学报, 2012, 61(16): 163201. doi: 10.7498/aps.61.163201
    [17] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究. 物理学报, 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [18] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [19] 刘志明, 刘文清, 高闽光, 童晶晶, 张天舒, 徐亮, 魏秀丽, 金岭, 王亚萍, 陈军. 基于红外掩日通量法(SOF)污染源排放气体浓度时空分布反演算法研究. 物理学报, 2010, 59(8): 5397-5405. doi: 10.7498/aps.59.5397
    [20] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤. 物理学报, 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
计量
  • 文章访问数:  4431
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-04-06
  • 刊出日期:  2015-08-05

/

返回文章
返回