搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于溶液加工小分子材料发光层的有机-无机复合发光器件

范昌君 王瑞雪 刘振 雷勇 李国庆 熊祖洪 杨晓晖

基于溶液加工小分子材料发光层的有机-无机复合发光器件

范昌君, 王瑞雪, 刘振, 雷勇, 李国庆, 熊祖洪, 杨晓晖
PDF
导出引用
导出核心图
  • 报道了基于溶液加工有机小分子材料发光层、聚乙烯亚胺电子注入层的有机-无机复合发光器件. 优化了空穴传输层和磷光染料的掺杂浓度, 得到最佳发光效率的器件. 蓝光、黄光和红光器件的最大外量子效率为17.3%, 10.7% 和7.3%. 在发光亮度为1000 cd/m2 时, 蓝光、黄光和红光器件的外量子效率分别为17.0%, 10.6% 和5.8%, 器件效率下降较小. 原因在于同时采用空穴传输型和电子传输型的小分子材料作为共同主体材料, 器件具有较宽的载流子复合区域, 降低了三线激发态-三线激发态湮灭和三线激发态-极化子相互作用对器件发光效率的影响. 白光器件在亮度为1000 cd/m2时, 发光效率和功率效率为31 cd/A和 14.8 lm/W. 器件的色度为(0.32, 0.42), 色度比较稳定, 随电流的变化微小. 器件的效率较以往报道的有机-无机复合发光器件有显著的提高, 主要归因于在聚乙烯亚胺上能够制备特性良好的小分子材料薄膜, 以及小分子主体材料拥有较高的三线态能量和平衡的载流子传输特性, 能够获得高效的磷光发射.
    • 基金项目: 国家自然科学基金(批准号: 61177030, 11374242, 11474232)、教育部新世纪优秀人才支持计划(批准号: NCET-11-0705)和西南大学博士基金(批准号: SWU111057)资助的课题.
    [1]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5480 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5480]

    [3]

    Zhang K, Zhong C M, Liu S J, Liang A H, Dong S, Huang F 2014 J. Mater. Chem. C 2 3270

    [4]

    Brine H, Juan F, Bolink H J 2013 Org. Electron. 14 164

    [5]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [6]

    Chen J S, Shi C S, Fu Q, Zhao F C, Hu Y, Feng Y L, Ma D G 2012 J. Mater. Chem. 22 5164

    [7]

    Morii K, Ishida M, Takashima T 2006 Appl. Phys. Lett. 89 183510

    [8]

    Lu L P, Kabra D, Friend R H 2012 Adv. Funct. Mater. 22 4165

    [9]

    Bolink H J, Coronado E, Orozco J, Sessolo M 2009 Adv. Mater. 21 79

    [10]

    Bolink H J, Brine H, Coronado E 2010 Adv. Mater. 22 2198

    [11]

    Lu L P, Kabra D, Johnson K, Friend R H 2012 Adv. Funct. Mater. 22 144

    [12]

    Bolink H J, Brine H, Coronado E 2010 ACS Appl. Mater. Interfaces 2 2694

    [13]

    Bolink H J, Coronado E, Sessolo M 2009 Chem. Mater. 21 439

    [14]

    Yook K S, Lee J Y 2014 Adv. Mater. 26 4218

    [15]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [16]

    Yang X H, Wang R X, Fan C J, Li G Q, Xiong Z H, Jabbour G E 2014 Org. Electron. 15 2387

    [17]

    Kim Y H, Han T H, Cho H, Min S Y, Lee C L, Lee T W 2014 Adv. Funct. Mater. 24 3808

    [18]

    Liu J, Shi X D, Wu X K 2014 Org. Electron. 15 2492

    [19]

    Fu Q, Chen J S, Shi C S, Ma D G 2012 ACS Appl. Mater. Interfaces 4 6579

    [20]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [21]

    Tsuboi T, Liu S W, Wu M F, Chen C T 2009 Org. Electron. 10 1372

    [22]

    Chang Y T, Chang J K, Lee Y T, Wang P S, Wu J L, Hsu C C, Wu I W, Tseng W H, Pi T W, Chen C T, Wu C I 2013 ACS Appl. Mater. Interfaces. 5 10614

    [23]

    Lu M T, Bruyn P D, Nicolai H T, Wetzelaer G J A H, Blom P W M 2012 Org. Electron 13 1693

    [24]

    Lamansky S, Djurovich P, Murphy D 2001 J. Am. Chem. Soc. 123 4304

    [25]

    Walikewitz B H, Kabra D, Gélinas S, Friend R H 2012 Phys. Rev. B 85 045209

    [26]

    Baldo M A, Adachi C, Forrest S R 2001 Phys. Rev. B 62 10967

    [27]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 125328

    [28]

    Duan L, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D, Qiu Y 2010 J. Mater. Chem. 20 6392

  • [1]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5480 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5480]

    [3]

    Zhang K, Zhong C M, Liu S J, Liang A H, Dong S, Huang F 2014 J. Mater. Chem. C 2 3270

    [4]

    Brine H, Juan F, Bolink H J 2013 Org. Electron. 14 164

    [5]

    Bolink H J, Coronado E, Repetto D, Sessolo M, Barea E M, Bisquert J, Garcia-Belmonte G, Prochazka J, Kavan L 2008 Adv. Funct. Mater. 18 145

    [6]

    Chen J S, Shi C S, Fu Q, Zhao F C, Hu Y, Feng Y L, Ma D G 2012 J. Mater. Chem. 22 5164

    [7]

    Morii K, Ishida M, Takashima T 2006 Appl. Phys. Lett. 89 183510

    [8]

    Lu L P, Kabra D, Friend R H 2012 Adv. Funct. Mater. 22 4165

    [9]

    Bolink H J, Coronado E, Orozco J, Sessolo M 2009 Adv. Mater. 21 79

    [10]

    Bolink H J, Brine H, Coronado E 2010 Adv. Mater. 22 2198

    [11]

    Lu L P, Kabra D, Johnson K, Friend R H 2012 Adv. Funct. Mater. 22 144

    [12]

    Bolink H J, Brine H, Coronado E 2010 ACS Appl. Mater. Interfaces 2 2694

    [13]

    Bolink H J, Coronado E, Sessolo M 2009 Chem. Mater. 21 439

    [14]

    Yook K S, Lee J Y 2014 Adv. Mater. 26 4218

    [15]

    Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327

    [16]

    Yang X H, Wang R X, Fan C J, Li G Q, Xiong Z H, Jabbour G E 2014 Org. Electron. 15 2387

    [17]

    Kim Y H, Han T H, Cho H, Min S Y, Lee C L, Lee T W 2014 Adv. Funct. Mater. 24 3808

    [18]

    Liu J, Shi X D, Wu X K 2014 Org. Electron. 15 2492

    [19]

    Fu Q, Chen J S, Shi C S, Ma D G 2012 ACS Appl. Mater. Interfaces 4 6579

    [20]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [21]

    Tsuboi T, Liu S W, Wu M F, Chen C T 2009 Org. Electron. 10 1372

    [22]

    Chang Y T, Chang J K, Lee Y T, Wang P S, Wu J L, Hsu C C, Wu I W, Tseng W H, Pi T W, Chen C T, Wu C I 2013 ACS Appl. Mater. Interfaces. 5 10614

    [23]

    Lu M T, Bruyn P D, Nicolai H T, Wetzelaer G J A H, Blom P W M 2012 Org. Electron 13 1693

    [24]

    Lamansky S, Djurovich P, Murphy D 2001 J. Am. Chem. Soc. 123 4304

    [25]

    Walikewitz B H, Kabra D, Gélinas S, Friend R H 2012 Phys. Rev. B 85 045209

    [26]

    Baldo M A, Adachi C, Forrest S R 2001 Phys. Rev. B 62 10967

    [27]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 125328

    [28]

    Duan L, Hou L D, Lee T W, Qiao J A, Zhang D Q, Dong G F, Wang L D, Qiu Y 2010 J. Mater. Chem. 20 6392

  • [1] 肖心明, 朱龙山, 关宇, 华杰, 王洪梅, 董贺, 汪津. 低效率滚降、发光颜色稳定的磷光白色有机电致发光器件. 物理学报, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [2] 张国辉, 华玉林, 吴空物, 吴晓明, 印寿根, 惠娟利, 安海萍, 朱飞剑, 牛 霞. 利用BCP层调节白色磷光有机电致发光器件色度的研究. 物理学报, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [3] 张丽娟, 华玉林, 吴晓明, 张国辉, 王 宇, 印寿根. 同时掺杂磷光和荧光染料的白色有机电致发光器件性能研究. 物理学报, 2008, 57(3): 1913-1917. doi: 10.7498/aps.57.1913
    [4] 张国辉, 华玉林, 吴晓明, 印寿根, 牛 霞, 惠娟利, 王 宇, 张丽娟. 一种多层白色磷光有机电致发光器件的制备及性能研究. 物理学报, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [5] 李宏建, 彭景翠, 瞿述, 夏辉, 罗小华, 许雪梅. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [6] 吴晓明, 华玉林, 印寿根, 张国辉, 惠娟利, 张丽娟, 王 宇. 不同主体双发光层白色有机电致发光器件的性能研究. 物理学报, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [7] 杨盛谊, 王振家, 陈晓红, 侯延冰, 董金凤, 徐叙. 高场下界面势垒对双层有机器件复合发光的影响. 物理学报, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
    [8] 姜 燕, 杨盛谊, 张秀龙, 滕 枫, 徐 征, 侯延冰. 基于ZnSe的有机-无机异质结电致发光器件. 物理学报, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
    [9] 张晓波, 曹 进, 委福祥, 蒋雪茵, 张志林, 朱文清, 许少鸿. 发光层厚度变化的高效红色有机电致磷光器件. 物理学报, 2006, 55(1): 119-124. doi: 10.7498/aps.55.119
    [10] 委福祥, 曹 进, 张晓波, 刘 向, 蒋雪茵, 张志林, 朱文清, 许少鸿. 新型苯乙烯衍生物掺杂的蓝色及白色有机电致发光器件. 物理学报, 2006, 55(4): 2008-2013. doi: 10.7498/aps.55.2008
    [11] 吴清洋, 谢国华, 张振松, 岳守振, 王鹏, 陈宇, 郭闰达, 赵毅, 刘式墉. 基于连续性掺杂的高效全荧光白色有机电致发光器件的研究. 物理学报, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [12] 曹 进, 刘 向, 张晓波, 委福祥, 朱文清, 蒋雪茵, 张志林, 许少鸿. 微腔结构顶发射有机发光器件. 物理学报, 2007, 56(2): 1088-1092. doi: 10.7498/aps.56.1088
    [13] 王旭鹏, 密保秀, 高志强, 郭晴, 黄维. 白光有机发光器件的研究进展. 物理学报, 2011, 60(8): 087808. doi: 10.7498/aps.60.087808
    [14] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [15] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [16] 文雯, 李璐, 于军胜, 蒋亚东, 王博. 基于红色荧光染料3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene的高性能白色有机电致发光器件. 物理学报, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [17] 吴晓明, 申利莹, 华玉林, 董木森, 穆雪, 白娟娟, 毕文涛, 杨小艳, 印寿根. 利用色彩转换法制备高色稳定性的柔性白色有机电致发光器件. 物理学报, 2012, 61(17): 178502. doi: 10.7498/aps.61.178502
    [18] 曹 进, 蒋雪茵, 张志林. 微腔调色法实现有机发光器件三基色的研究. 物理学报, 2007, 56(6): 3493-3498. doi: 10.7498/aps.56.3493
    [19] 汪津, 姜文龙, 华杰, 王广德, 韩强, 常喜, 张刚. 磁场对基于Co铁磁薄膜的有机发光器件效率和电流的影响. 物理学报, 2010, 59(11): 8212-8217. doi: 10.7498/aps.59.8212
    [20] 陈苏杰, 于军胜, 文雯, 蒋亚东. NPB:CBP复合空穴传输层对黄色有机电致发光器件的影响. 物理学报, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
  • 引用本文:
    Citation:
计量
  • 文章访问数:  476
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-04-06
  • 刊出日期:  2015-08-20

基于溶液加工小分子材料发光层的有机-无机复合发光器件

  • 1. 西南大学物理科学与技术学院, 重庆 400715
    基金项目: 

    国家自然科学基金(批准号: 61177030, 11374242, 11474232)、教育部新世纪优秀人才支持计划(批准号: NCET-11-0705)和西南大学博士基金(批准号: SWU111057)资助的课题.

摘要: 报道了基于溶液加工有机小分子材料发光层、聚乙烯亚胺电子注入层的有机-无机复合发光器件. 优化了空穴传输层和磷光染料的掺杂浓度, 得到最佳发光效率的器件. 蓝光、黄光和红光器件的最大外量子效率为17.3%, 10.7% 和7.3%. 在发光亮度为1000 cd/m2 时, 蓝光、黄光和红光器件的外量子效率分别为17.0%, 10.6% 和5.8%, 器件效率下降较小. 原因在于同时采用空穴传输型和电子传输型的小分子材料作为共同主体材料, 器件具有较宽的载流子复合区域, 降低了三线激发态-三线激发态湮灭和三线激发态-极化子相互作用对器件发光效率的影响. 白光器件在亮度为1000 cd/m2时, 发光效率和功率效率为31 cd/A和 14.8 lm/W. 器件的色度为(0.32, 0.42), 色度比较稳定, 随电流的变化微小. 器件的效率较以往报道的有机-无机复合发光器件有显著的提高, 主要归因于在聚乙烯亚胺上能够制备特性良好的小分子材料薄膜, 以及小分子主体材料拥有较高的三线态能量和平衡的载流子传输特性, 能够获得高效的磷光发射.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回