搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响

涂程威 田金鹏 吴明晓 刘彭义

PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响

涂程威, 田金鹏, 吴明晓, 刘彭义
PDF
导出引用
导出核心图
  • 制备了结构为ITO/MoO3(6 nm)/Rubrene (30 nm)/C70 (30 nm)/PTCBI(x nm)/Al (150 nm)器件, 研究了四羧基苝的衍生物PTCBI作为阴极修饰层对Rubrene/C70有机太阳能电池的作用. 实验结果显示, 在C70与Al电极之间插入PTCBI 后, 电池性能得到明显改善; 分析表明, 插入PTCBI后, 活性层与阴极形成了良好的欧姆接触, 提高了器件的内建电场, 同时PTCBI避免了激子与Al电极的接触, 减少了在制备过程中高动能Al对C70的破坏. 进一步考察了PTCBI厚度对电池的性能的影响, 结果显示, 厚度为6 nm的PTCBI 层器件性能最佳, 其开路电压(VOC)、填充因子(FF)、短路电流密度(JSC)与功率转换效率(P)与未插入PTCBI修饰层的器件相比分别提高了70.4%, 55.5%, 125.1%, 292.2%. 当PTCBI的厚度大于6 nm时, 激子解离后产生的自由电子会在PTCBI与阴极界面积累, 导致器件J-V曲线出现S形.
    • 基金项目: 广东省自然科学基金(批准号: S2013010012856)资助的课题.
    [1]

    Tang C W 1986 Appl. Phys. Lett. 48 183

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nature Photon. 6 591

    [4]

    Ahlswede E, Hanisch J, Powalla M 2007 Appl. Phys. Lett. 90 163504

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 物理学报 62 128803]

    [6]

    Hayakawa A, Yoshikawa O, Fujieda T, Uehara K, Yoshikawa S 2007 Appl. Phys. Lett. 90 163517

    [7]

    Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S, Zhao Y 2013 Chin. Phys. B 22 118801

    [8]

    Zhan Z, Liu P Y, Ye Q, Chen Z G 2012 J. Optoelectron.· Laser 23 1696 (in Chinese) [詹真, 刘彭义, 叶勤, 陈子国 2012 光电子·激光 23 1696]

    [9]

    Wu B, Liu P Y, Li Y W, Hou L T 2010 J. Optoelectron.·Laser 21 363 (in Chinese) [吴冰, 刘彭义, 李艳武, 侯林涛 2010 光电子·激光 21 363]

    [10]

    Li Y W, Liu P Y, Hou L T, Wu B 2010 Acta Phys. Sin. 59 1248 (in Chinese) [李艳武, 刘彭义, 侯林涛, 吴冰 2010 物理学报 59 1248]

    [11]

    Wang Y M, Teng F, Zhou Q C, Wang Y S 2006 Appl. Surf. Sci. 252 2355

    [12]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [13]

    Mori T, Kato K 2007 J. Photopolym. Sci. Tech. 20 61

    [14]

    Liu R, Xu Z, Zhao S L, Zhang F J, Cao X N, Kong C, Cao W Z, Gong W 2011 Acta Phys. Sin. 60 058801 (in Chinese) [刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟 2011 物理学报 60 058801]

    [15]

    Peumans P, Uchida S, Forrest S R 2003 Nature 425 158

    [16]

    Yang F, Shtein M, Forrest S R 2005 Nat. Mater. 4 37

    [17]

    Yakimov A, Forrest S R. 2002 Appl. Phys. Lett. 80 1667

    [18]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [19]

    Wang D D, Wu Z X, Zhang X W, Wang D W, Hou X 2010 J. Lumin. 130 321

    [20]

    Ding C G, Yang Y L, Han R S, Wang K L 2001 Phys. Rev. A 64 043201

    [21]

    Huang W, Mi B X, Gao Z Q 2011 Orangic Electronic (Beijing: Scinece Press) p251 (in Chinese) [黄维, 密保秀, 高志强 2011 有机电子学(北京: 科学出版社) 第251页]

    [22]

    Song Q L, Li C M 2007 Appl. Phys. Lett. 90 071109

    [23]

    Wang M L, Song Q L, Wu H R 2007 Org. Electron. 8 445

    [24]

    Maxwell A J, Brhwiler P A, Arvanitis D, Hasselström J, Johansson M K J, Mårtensson N 1998 Phys. Rev. B 57 7312

    [25]

    Wang J C, Ren X C, Shi S Q, Leung C W, Paddy K L Chan 2011 Org. Electron. 12 880

    [26]

    Finck B Y, Schwartz B J 2013 Appl. Phys. Lett. 103 053306

    [27]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

  • [1]

    Tang C W 1986 Appl. Phys. Lett. 48 183

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nature Photon. 6 591

    [4]

    Ahlswede E, Hanisch J, Powalla M 2007 Appl. Phys. Lett. 90 163504

    [5]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 物理学报 62 128803]

    [6]

    Hayakawa A, Yoshikawa O, Fujieda T, Uehara K, Yoshikawa S 2007 Appl. Phys. Lett. 90 163517

    [7]

    Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S, Zhao Y 2013 Chin. Phys. B 22 118801

    [8]

    Zhan Z, Liu P Y, Ye Q, Chen Z G 2012 J. Optoelectron.· Laser 23 1696 (in Chinese) [詹真, 刘彭义, 叶勤, 陈子国 2012 光电子·激光 23 1696]

    [9]

    Wu B, Liu P Y, Li Y W, Hou L T 2010 J. Optoelectron.·Laser 21 363 (in Chinese) [吴冰, 刘彭义, 李艳武, 侯林涛 2010 光电子·激光 21 363]

    [10]

    Li Y W, Liu P Y, Hou L T, Wu B 2010 Acta Phys. Sin. 59 1248 (in Chinese) [李艳武, 刘彭义, 侯林涛, 吴冰 2010 物理学报 59 1248]

    [11]

    Wang Y M, Teng F, Zhou Q C, Wang Y S 2006 Appl. Surf. Sci. 252 2355

    [12]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [13]

    Mori T, Kato K 2007 J. Photopolym. Sci. Tech. 20 61

    [14]

    Liu R, Xu Z, Zhao S L, Zhang F J, Cao X N, Kong C, Cao W Z, Gong W 2011 Acta Phys. Sin. 60 058801 (in Chinese) [刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟 2011 物理学报 60 058801]

    [15]

    Peumans P, Uchida S, Forrest S R 2003 Nature 425 158

    [16]

    Yang F, Shtein M, Forrest S R 2005 Nat. Mater. 4 37

    [17]

    Yakimov A, Forrest S R. 2002 Appl. Phys. Lett. 80 1667

    [18]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [19]

    Wang D D, Wu Z X, Zhang X W, Wang D W, Hou X 2010 J. Lumin. 130 321

    [20]

    Ding C G, Yang Y L, Han R S, Wang K L 2001 Phys. Rev. A 64 043201

    [21]

    Huang W, Mi B X, Gao Z Q 2011 Orangic Electronic (Beijing: Scinece Press) p251 (in Chinese) [黄维, 密保秀, 高志强 2011 有机电子学(北京: 科学出版社) 第251页]

    [22]

    Song Q L, Li C M 2007 Appl. Phys. Lett. 90 071109

    [23]

    Wang M L, Song Q L, Wu H R 2007 Org. Electron. 8 445

    [24]

    Maxwell A J, Brhwiler P A, Arvanitis D, Hasselström J, Johansson M K J, Mårtensson N 1998 Phys. Rev. B 57 7312

    [25]

    Wang J C, Ren X C, Shi S Q, Leung C W, Paddy K L Chan 2011 Org. Electron. 12 880

    [26]

    Finck B Y, Schwartz B J 2013 Appl. Phys. Lett. 103 053306

    [27]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

  • [1] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [2] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [3] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [4] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [5] 徐征, 赵谡玲, 张福俊, 孔超, 曹文喆, 龚伟, 刘瑞, 曹晓宁. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [6] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [7] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [8] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响. 物理学报, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [9] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [10] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响. 物理学报, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [11] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用. 物理学报, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
    [12] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [13] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性. 物理学报, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [14] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究. 物理学报, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [15] 吉野胜美, 封伟, 曹猛, 韦玮, 吴洪才, 万梅香. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [16] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] 刘俊成, 李蛟, 高从堦. PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响. 物理学报, 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [18] 张国辉, 华玉林, 吴晓明, 印寿根, 牛 霞, 惠娟利, 王 宇, 张丽娟. 一种多层白色磷光有机电致发光器件的制备及性能研究. 物理学报, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [19] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [20] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  779
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-06-07
  • 刊出日期:  2015-10-20

PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响

  • 1. 暨南大学物理系, 暨南大学思源实验室, 广州 510632
    基金项目: 

    广东省自然科学基金(批准号: S2013010012856)资助的课题.

摘要: 制备了结构为ITO/MoO3(6 nm)/Rubrene (30 nm)/C70 (30 nm)/PTCBI(x nm)/Al (150 nm)器件, 研究了四羧基苝的衍生物PTCBI作为阴极修饰层对Rubrene/C70有机太阳能电池的作用. 实验结果显示, 在C70与Al电极之间插入PTCBI 后, 电池性能得到明显改善; 分析表明, 插入PTCBI后, 活性层与阴极形成了良好的欧姆接触, 提高了器件的内建电场, 同时PTCBI避免了激子与Al电极的接触, 减少了在制备过程中高动能Al对C70的破坏. 进一步考察了PTCBI厚度对电池的性能的影响, 结果显示, 厚度为6 nm的PTCBI 层器件性能最佳, 其开路电压(VOC)、填充因子(FF)、短路电流密度(JSC)与功率转换效率(P)与未插入PTCBI修饰层的器件相比分别提高了70.4%, 55.5%, 125.1%, 292.2%. 当PTCBI的厚度大于6 nm时, 激子解离后产生的自由电子会在PTCBI与阴极界面积累, 导致器件J-V曲线出现S形.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回