搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑腔冷冻靶传热与自然对流的数值模拟研究

黄鑫 彭述明 周晓松 余铭铭 尹剑 温成伟

黑腔冷冻靶传热与自然对流的数值模拟研究

黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟
PDF
导出引用
导出核心图
  • 惯性约束聚变的设计要求在靶丸内形成均匀光滑的氘氚冰层, 靶丸周围的热环境对冰层的质量特别是低阶粗糙度有很大的影响. 本文对自主研发的黑腔冷冻靶实验装置中的热物理问题展开了数值模拟, 重点考察了黑腔冷冻靶的传热和流体力学特性. 通过参数分析得到了自然对流对靶丸温度均匀性产生影响的临界条件. 比较了黑腔不同布置朝向时的流场和温度分布, 结果显示黑腔水平布置时自然对流更加强烈, 造成的靶丸温度不均匀性也更大. 在此基础上, 讨论了消除自然对流影响的可能性, 结果发现仅当黑腔垂直布置时利用黑腔分区方法能够消除对流效应对靶丸温度不均匀性的影响而黑腔水平布置时不能消除. 研究结论对于实验中冷冻靶结构的设计、改进和实验的开展等具有指导意义.
    [1]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature506 343

    [2]

    Haan S W, Salmonson J D, Clark D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2011 Fusion Sci. Technol. 59 1

    [3]

    Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310

    [4]

    Chernov A A, Kozioziemski B J, Koch J A, Atherton L J, Johnson M A, Hamza A V, Kucheyev S O, Lugten J B, Mapoles E A, Moody J D, Salmonson J D, Sater J D 2009 Appl. Phys. Lett. 94 064105

    [5]

    London R A, Kozioziemski B J, Marinak M M Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608

    [6]

    Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys.B 22 115204

    [7]

    Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103

    [8]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 物理学报 61 195204]

    [9]

    Bi P, Lei H L, Liu Y Q, Li J, Yang X D 2013 Acta Phys. Sin. 62 062802 (in Chinese) [毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东 2012 物理学报 61 062802]

    [10]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese) [尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 物理学报 64 015202]

    [11]

    Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 44 811

    [12]

    Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 45 253

    [13]

    Giedt W H, Sanchez J J, Bernat T P 2006 Fusion Sci. Technol. 49 588

    [14]

    Kozioziemski B J, Mapoles E R, Sater J D, Chernov A A, Moody J D, Lugten J B, Johnson M A 2011 Fusion Sci. Technol. 59 14

    [15]

    Lallet F, Gauvin C, Martin M, Moll G 2011 Fusion Sci. Technol.59 171

    [16]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [17]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [18]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) pp105

    [19]

    Chen G B, Bao R, Huang Y H 2006 Cryogenic Technology: Properties (Beijing: Chemical Industry Press) p103-112 [陈国邦, 包锐, 黄永华 2006 低温工程技术(数据卷)(北京:化学工业出版社) 第103–112页]

  • [1]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature506 343

    [2]

    Haan S W, Salmonson J D, Clark D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, MacGowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2011 Fusion Sci. Technol. 59 1

    [3]

    Hoffer J K, Foreman L R 1988 Phys. Rev. Lett. 60 1310

    [4]

    Chernov A A, Kozioziemski B J, Koch J A, Atherton L J, Johnson M A, Hamza A V, Kucheyev S O, Lugten J B, Mapoles E A, Moody J D, Salmonson J D, Sater J D 2009 Appl. Phys. Lett. 94 064105

    [5]

    London R A, Kozioziemski B J, Marinak M M Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608

    [6]

    Wang F, Peng X S, Kang D G, Liu S Y, Xu T 2013 Chin. Phys.B 22 115204

    [7]

    Lei H L, Li J, Tang Y J, Liu Y Q 2009 Rev. Sci. Instrum. 80 033103

    [8]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 物理学报 61 195204]

    [9]

    Bi P, Lei H L, Liu Y Q, Li J, Yang X D 2013 Acta Phys. Sin. 62 062802 (in Chinese) [毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东 2012 物理学报 61 062802]

    [10]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese) [尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 物理学报 64 015202]

    [11]

    Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 44 811

    [12]

    Sanchez J J, Giedt W H 2003 Fusion Sci. Technol. 45 253

    [13]

    Giedt W H, Sanchez J J, Bernat T P 2006 Fusion Sci. Technol. 49 588

    [14]

    Kozioziemski B J, Mapoles E R, Sater J D, Chernov A A, Moody J D, Lugten J B, Johnson M A 2011 Fusion Sci. Technol. 59 14

    [15]

    Lallet F, Gauvin C, Martin M, Moll G 2011 Fusion Sci. Technol.59 171

    [16]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [17]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [18]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) pp105

    [19]

    Chen G B, Bao R, Huang Y H 2006 Cryogenic Technology: Properties (Beijing: Chemical Industry Press) p103-112 [陈国邦, 包锐, 黄永华 2006 低温工程技术(数据卷)(北京:化学工业出版社) 第103–112页]

  • [1] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的LBM模拟研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200308
    [2] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟. 物理学报, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [3] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [4] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [5] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [6] 陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅. 低温冷冻靶温度动态特性的数值模拟研究. 物理学报, 2017, 66(19): 190702. doi: 10.7498/aps.66.190702
    [7] 杨向东, 毕鹏, 刘元琼, 唐永建, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [8] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [9] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [10] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] 温圣林, 姚欣, 高福华, 张怡霄, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [12] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [13] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] 王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐. 背光阴影成像表征降温速率对ICF冷冻冰层均化的影响. 物理学报, 2012, 61(19): 195204. doi: 10.7498/aps.61.195204
    [15] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [16] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [17] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [18] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [19] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [20] 毕鹏, 雷海乐, 刘元琼, 黎军, 杨向东. 红外光诱导氘氘固体再分布的研究. 物理学报, 2012, 61(6): 062802. doi: 10.7498/aps.61.062802
  • 引用本文:
    Citation:
计量
  • 文章访问数:  788
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-12
  • 修回日期:  2015-07-07
  • 刊出日期:  2015-11-05

黑腔冷冻靶传热与自然对流的数值模拟研究

    基金项目: 

    国家重大专项和中国博士后科学基金 (批准号:2014 M552382)资助的课题.

摘要: 惯性约束聚变的设计要求在靶丸内形成均匀光滑的氘氚冰层, 靶丸周围的热环境对冰层的质量特别是低阶粗糙度有很大的影响. 本文对自主研发的黑腔冷冻靶实验装置中的热物理问题展开了数值模拟, 重点考察了黑腔冷冻靶的传热和流体力学特性. 通过参数分析得到了自然对流对靶丸温度均匀性产生影响的临界条件. 比较了黑腔不同布置朝向时的流场和温度分布, 结果显示黑腔水平布置时自然对流更加强烈, 造成的靶丸温度不均匀性也更大. 在此基础上, 讨论了消除自然对流影响的可能性, 结果发现仅当黑腔垂直布置时利用黑腔分区方法能够消除对流效应对靶丸温度不均匀性的影响而黑腔水平布置时不能消除. 研究结论对于实验中冷冻靶结构的设计、改进和实验的开展等具有指导意义.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回