搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟

齐聪 何光艳 李意民 何玉荣

方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟

齐聪, 何光艳, 李意民, 何玉荣
PDF
导出引用
  • 纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2014QNA23)资助的课题.
    [1]

    Choi U S 1995 ASME FED. 1995 99

    [2]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401 (in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401]

    [3]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [4]

    Salem A M, Ismail G, Fathy R 2014 Chin. Phys. B 23 044402

    [5]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [6]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [7]

    Xiao B Q 2013 Chin. Phys. B 22 014402

    [8]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [9]

    Oztop H F, Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326

    [10]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506

    [11]

    Saleh H, Roslan R, Hashim I 2011 Int. J. Heat Mass Transfer 54 194

    [12]

    Ghasemi B, Aminossadati S M 2010 Int. J. Therm. Sci. 49 931

    [13]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 物理学报 58 2513]

    [14]

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese) [肖波齐, 范金土, 蒋国平, 陈玲霞 2012 物理学报 61 154401]

    [15]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Youshiyuki K 2012 Chin. Phys. B 21 124703

    [16]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [17]

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702]

    [18]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

    [19]

    Guo Z, Shi B, Zheng C 2002 Int. J. Numer. Methods Fluids 39 325

    [20]

    Guo Z, Zheng C, Shi B, Zhao T S 2007 Phys. Rev. E 75 1

    [21]

    Xuan Y, Yao Z 2005 Heat Mass Transfer 41 199

    [22]

    Wang Y, He Y L, Tong C Q, Liu Y W 2007 J. Eng. Thermophys. 28 313 (in Chinese) [王勇, 何雅玲, 童长青, 刘迎文 2007 工程热物理学报 28 313]

    [23]

    Guo Z L, Li Q, Zheng C G 2002 Chin. J. Comput. Phys. 19 483 (in Chinese) [郭照立, 李青, 郑楚光 2002 计算物理 19 483]

    [24]

    Zhou L J, Xuan Y M, Li Q 2009 Chin. J. Comput. Phys. 26 631 (in Chinese) [周陆军, 宣益民, 李强 2009 计算物理 26 631]

    [25]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [26]

    Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass Transfer 38 798

    [27]

    Lai F H, Yang Y T 2011 Int. J. Therm. Sci. 50 1930

    [28]

    Guiet J, Reggio M, Vasseur P 2011 Comput. Therm. Sci. 3 1

    [29]

    Nemati H, Farhadi M, Sedighi K, Ashorynejad H R, Fattahi E 2012 Sci. Iran. B 19 303

    [30]

    Zhou L J, Xuan Y M, Li Q 2010 Int. J. Multiphase Flow 36 364

    [31]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersion (Cambridge: Cambridge University Press) pp30-45

    [32]

    Tian W C, Jia J Y, Chen G Y 2006 Chin. J. Comput. Phys. 23 366 (in Chinese) [田文超, 贾建援, 陈光炎 2006 计算物理 23 366]

    [33]

    Zhou T, Li H Z 1999 Chem. React. Eng. Technol. 115 1 (in Chinese) [周涛, 李洪钟 1999 化学反应工程与工艺 115 1]

    [34]

    He C, Ahmadi G 1999 J. Aerosol. Sci. 30 739

    [35]

    Abu-Nada E 2009 Int. J. Heat Fluid Flow 30 679

    [36]

    Abu-Nada E, Oztop H F 2009 Int. J. Heat Fluid Flow 30 669

    [37]

    L X Y 2006 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [吕晓阳2006 博士学位论文 (上海:复旦大学)]

    [38]

    Hortmann M, Perić M, Scheuerer G 1990 Int. J. Numer. Methods Fluids 11 189

    [39]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639

    [40]

    D'Orazio A, Corcione M, Celata G P 2004 Int. J. Therm. Sci. 43 575

    [41]

    De Vahl Davis G 1983 Int. J. Numer. Methods Fluids 3 249

    [42]

    Barakos G, Mistoulis E, Assimacopoulos D 1994 Int. J. Numer. Methods Fluids 18 695

    [43]

    Fusegi T, Hyun J M, Kuwahara K, Farouk B 1991 Int. J. Heat Mass Transfer 34 1543

    [44]

    Krane R J, Jessee J 1983 Proceedings of the 1th ASME-JSME Thermal Engineering Joint Conference Honolulu, Hawaii 1983 p323

  • [1]

    Choi U S 1995 ASME FED. 1995 99

    [2]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401 (in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401]

    [3]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [4]

    Salem A M, Ismail G, Fathy R 2014 Chin. Phys. B 23 044402

    [5]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [6]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [7]

    Xiao B Q 2013 Chin. Phys. B 22 014402

    [8]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [9]

    Oztop H F, Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326

    [10]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506

    [11]

    Saleh H, Roslan R, Hashim I 2011 Int. J. Heat Mass Transfer 54 194

    [12]

    Ghasemi B, Aminossadati S M 2010 Int. J. Therm. Sci. 49 931

    [13]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 物理学报 58 2513]

    [14]

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese) [肖波齐, 范金土, 蒋国平, 陈玲霞 2012 物理学报 61 154401]

    [15]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Youshiyuki K 2012 Chin. Phys. B 21 124703

    [16]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [17]

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702]

    [18]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

    [19]

    Guo Z, Shi B, Zheng C 2002 Int. J. Numer. Methods Fluids 39 325

    [20]

    Guo Z, Zheng C, Shi B, Zhao T S 2007 Phys. Rev. E 75 1

    [21]

    Xuan Y, Yao Z 2005 Heat Mass Transfer 41 199

    [22]

    Wang Y, He Y L, Tong C Q, Liu Y W 2007 J. Eng. Thermophys. 28 313 (in Chinese) [王勇, 何雅玲, 童长青, 刘迎文 2007 工程热物理学报 28 313]

    [23]

    Guo Z L, Li Q, Zheng C G 2002 Chin. J. Comput. Phys. 19 483 (in Chinese) [郭照立, 李青, 郑楚光 2002 计算物理 19 483]

    [24]

    Zhou L J, Xuan Y M, Li Q 2009 Chin. J. Comput. Phys. 26 631 (in Chinese) [周陆军, 宣益民, 李强 2009 计算物理 26 631]

    [25]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [26]

    Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass Transfer 38 798

    [27]

    Lai F H, Yang Y T 2011 Int. J. Therm. Sci. 50 1930

    [28]

    Guiet J, Reggio M, Vasseur P 2011 Comput. Therm. Sci. 3 1

    [29]

    Nemati H, Farhadi M, Sedighi K, Ashorynejad H R, Fattahi E 2012 Sci. Iran. B 19 303

    [30]

    Zhou L J, Xuan Y M, Li Q 2010 Int. J. Multiphase Flow 36 364

    [31]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersion (Cambridge: Cambridge University Press) pp30-45

    [32]

    Tian W C, Jia J Y, Chen G Y 2006 Chin. J. Comput. Phys. 23 366 (in Chinese) [田文超, 贾建援, 陈光炎 2006 计算物理 23 366]

    [33]

    Zhou T, Li H Z 1999 Chem. React. Eng. Technol. 115 1 (in Chinese) [周涛, 李洪钟 1999 化学反应工程与工艺 115 1]

    [34]

    He C, Ahmadi G 1999 J. Aerosol. Sci. 30 739

    [35]

    Abu-Nada E 2009 Int. J. Heat Fluid Flow 30 679

    [36]

    Abu-Nada E, Oztop H F 2009 Int. J. Heat Fluid Flow 30 669

    [37]

    L X Y 2006 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [吕晓阳2006 博士学位论文 (上海:复旦大学)]

    [38]

    Hortmann M, Perić M, Scheuerer G 1990 Int. J. Numer. Methods Fluids 11 189

    [39]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639

    [40]

    D'Orazio A, Corcione M, Celata G P 2004 Int. J. Therm. Sci. 43 575

    [41]

    De Vahl Davis G 1983 Int. J. Numer. Methods Fluids 3 249

    [42]

    Barakos G, Mistoulis E, Assimacopoulos D 1994 Int. J. Numer. Methods Fluids 18 695

    [43]

    Fusegi T, Hyun J M, Kuwahara K, Farouk B 1991 Int. J. Heat Mass Transfer 34 1543

    [44]

    Krane R J, Jessee J 1983 Proceedings of the 1th ASME-JSME Thermal Engineering Joint Conference Honolulu, Hawaii 1983 p323

  • [1] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [2] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [3] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [4] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [5] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [6] 何郁波, 林晓艳, 董晓亮. 应用格子Boltzmann模型模拟一类二维偏微分方程. 物理学报, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [7] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [8] 赵 颖, 季仲贞, 冯 涛. 用格子Boltzmann模型模拟垂直平板间的热对流. 物理学报, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [9] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [10] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [11] 俞慧丹, 赵凯华. 模拟可压缩流体的格子Boltzmann模型. 物理学报, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
    [12] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [13] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟. 物理学报, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [14] 刘慕仁, 陈若航, 李华兵, 孔令江. 二维对流扩散方程的格子Boltzmann方法. 物理学报, 1999, 48(10): 1800-1803. doi: 10.7498/aps.48.1800
    [15] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析. 物理学报, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [16] 俞慧丹, 赵凯华. 高Mach数格子Boltzmann模型的改进. 物理学报, 2000, 49(4): 816-818. doi: 10.7498/aps.49.816
    [17] 董绍静. SU(2)格点规范理论中的重夸克相互作用力及势的计算. 物理学报, 1986, 35(9): 1248-1252. doi: 10.7498/aps.35.1248
    [18] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [19] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理. 物理学报, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [20] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1155
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-08
  • 修回日期:  2014-07-22
  • 刊出日期:  2015-01-05

方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟

  • 1. 中国矿业大学电力工程学院, 徐州 221116;
  • 2. 哈尔滨工业大学能源科学与工程学院, 哈尔滨 150001
    基金项目: 

    中央高校基本科研业务费专项资金(批准号: 2014QNA23)资助的课题.

摘要: 纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回