搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机框架材料力学、电学及其应变调控特性的第一原理研究

王晓媛 赵丰鹏 王杰 闫亚宾

金属有机框架材料力学、电学及其应变调控特性的第一原理研究

王晓媛, 赵丰鹏, 王杰, 闫亚宾
PDF
导出引用
导出核心图
  • 本研究利用基于密度泛函理论的第一原理方法研究了典型金属有机框架材料-MOF-5的力学、电学性质及其应变调控特性. 通过对MOF-5材料施加不同类型的应变,系统地研究了MOF-5材料的力学特性,获得了MOF-5的弹性常数、杨氏模量等基本力学参数. 另一方面,通过分析能带结构等特征得到了MOF-5的本征电学特性,计算得到的MOF-5 的禁带带宽为3.49 eV,属于宽禁带半导体. 对MOF-5电学性质的应变调控特性研究发现,外界应变会显著降低MOF-5的禁带带宽,提高其导电性. 通过进一步分析其电子态密度、共价键键长等的变化,发现外界应变会引起MOF-5有机配体中共价键强度的降低,继而导致材料禁带带宽的减小. 研究从理论上定量揭示了外部应变对MOF-5电学性质的调控行为,为基于MOF-5的气氛传感器优化设计和性能评估等提供了重要的理论依据.
      通信作者: 闫亚宾, yanyabin@gmail.com
    • 基金项目: 中国工程物理研究院总体工程研究所科技专项(批准号:2013KJZ02)、国家自然科学基金(批准号:11302205)、中国工程物理研究院院长基金(批准号:2014-1-097)和中国工程物理研究院重点学科项目计算固体力学资助的课题.
    [1]

    Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J 2003 Nature 423 705

    [2]

    Kitagawa S, Kitaura R, Noro S 2004 Angew. Chem. Int. Ed. 43 2334

    [3]

    Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J 2006 J. Mater. Chem. 16 626

    [4]

    Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T 2010 Nature Chem. 2 944

    [5]

    Zhong C L, Liu D H, Yang Q Y 2013 Constitutive relation of Metal-organic frameworks and its design (Beijing: Science Press) pp1-12 (in Chinese) [仲崇立, 刘大欢, 阳庆元 2013 金属-有机骨架材料的构效关系及设计(北京:科学出版社) 第 1-12 页]

    [6]

    Jacoby M 2008 Chem. Eng. News 86 13

    [7]

    Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Jeffrey R, Long J R 2012 Chem. Rev. 112 724

    [8]

    Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126

    [9]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M 2015 Science 300 1127

    [10]

    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M 2002 Science 295 469

    [11]

    Rowsell J L C, Yaghi O M 2004 Micropor. Mesopor. Mater. 73 3

    [12]

    Li H, Eddaoudi M, O'Keeffe M, Yaghi O M 1999 Nature 402 276

    [13]

    Xiang H, Liu D H, Yang Q Y, Mi J G, Zhong C L 2011 Acta Phys. Sin. 60 093602 (in Chinese) [向辉, 刘大欢, 阳庆元, 密建国, 仲崇立 2011 物理学报 60 093602]

    [14]

    Sagara T, Klassen J, Ganz E 2004 J. Chem. Phys. 121 12543

    [15]

    Sillar K, Hofmann A, Sauer J 2009 J. Am. Chem. Soc. 131 4143

    [16]

    Schrock K, Schroder F, Heyden M, Fischerb R A, Havenitha M 2008 Phys. Chem. Chem. Phys. 10 4732

    [17]

    Britt D, Tranchemontagne D, Yaghi O M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11623

    [18]

    Silva C G, Corma A, Garca H 2010 J. Mater. Chem. 20 3141

    [19]

    Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T 2012 Chem. Rev. 112 1105

    [20]

    Ellern I, Venkatasubramanian A, Lee J H, Hesketh P, Stavila V, Robinson A, Allendorf M 2013 Micro Nano Lett. 8 766

    [21]

    Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059

    [22]

    Bahr D F, Reid J A, Mook W M, Bauer C A, Stumpf R, Skulan A J, Moody N R, Simmons B A, Shindel M M, Allendorf M D 2007 Phys. Rev. B 76 184106

    [23]

    Mattesini M, Soler J M, Yndurain F 2006 Phys. Rev. B 73 094111

    [24]

    Samanta A, Furuta T, Li J 2006 J. Chem. Phys. 125 084714

    [25]

    Zhou W, Yildirim T 2006 Phys. Rev. B 74 180301

    [26]

    Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K P, Bjorgen M, Zecchina A 2004 Chem. Commun. 20 2300

    [27]

    Alvaro M, Carbonell E, Ferrer B, Llabres i Xamena F X, Garcia H 2007 Chem. Eur. J. 13 5106

    [28]

    Civalleri B, Napoli F, Noel Y, Roetti C, Dovesi R 2006 Cryst. Eng. Comm. 8 364

    [29]

    Lin C K, Zhao D, Gao W Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D J 2012 Inorg. Chem. 51 9039

  • [1]

    Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J 2003 Nature 423 705

    [2]

    Kitagawa S, Kitaura R, Noro S 2004 Angew. Chem. Int. Ed. 43 2334

    [3]

    Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J 2006 J. Mater. Chem. 16 626

    [4]

    Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T 2010 Nature Chem. 2 944

    [5]

    Zhong C L, Liu D H, Yang Q Y 2013 Constitutive relation of Metal-organic frameworks and its design (Beijing: Science Press) pp1-12 (in Chinese) [仲崇立, 刘大欢, 阳庆元 2013 金属-有机骨架材料的构效关系及设计(北京:科学出版社) 第 1-12 页]

    [6]

    Jacoby M 2008 Chem. Eng. News 86 13

    [7]

    Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Jeffrey R, Long J R 2012 Chem. Rev. 112 724

    [8]

    Cui Y, Yue Y, Qian G, Chen B 2012 Chem. Rev. 112 1126

    [9]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M 2015 Science 300 1127

    [10]

    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M 2002 Science 295 469

    [11]

    Rowsell J L C, Yaghi O M 2004 Micropor. Mesopor. Mater. 73 3

    [12]

    Li H, Eddaoudi M, O'Keeffe M, Yaghi O M 1999 Nature 402 276

    [13]

    Xiang H, Liu D H, Yang Q Y, Mi J G, Zhong C L 2011 Acta Phys. Sin. 60 093602 (in Chinese) [向辉, 刘大欢, 阳庆元, 密建国, 仲崇立 2011 物理学报 60 093602]

    [14]

    Sagara T, Klassen J, Ganz E 2004 J. Chem. Phys. 121 12543

    [15]

    Sillar K, Hofmann A, Sauer J 2009 J. Am. Chem. Soc. 131 4143

    [16]

    Schrock K, Schroder F, Heyden M, Fischerb R A, Havenitha M 2008 Phys. Chem. Chem. Phys. 10 4732

    [17]

    Britt D, Tranchemontagne D, Yaghi O M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11623

    [18]

    Silva C G, Corma A, Garca H 2010 J. Mater. Chem. 20 3141

    [19]

    Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T 2012 Chem. Rev. 112 1105

    [20]

    Ellern I, Venkatasubramanian A, Lee J H, Hesketh P, Stavila V, Robinson A, Allendorf M 2013 Micro Nano Lett. 8 766

    [21]

    Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 40 1059

    [22]

    Bahr D F, Reid J A, Mook W M, Bauer C A, Stumpf R, Skulan A J, Moody N R, Simmons B A, Shindel M M, Allendorf M D 2007 Phys. Rev. B 76 184106

    [23]

    Mattesini M, Soler J M, Yndurain F 2006 Phys. Rev. B 73 094111

    [24]

    Samanta A, Furuta T, Li J 2006 J. Chem. Phys. 125 084714

    [25]

    Zhou W, Yildirim T 2006 Phys. Rev. B 74 180301

    [26]

    Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K P, Bjorgen M, Zecchina A 2004 Chem. Commun. 20 2300

    [27]

    Alvaro M, Carbonell E, Ferrer B, Llabres i Xamena F X, Garcia H 2007 Chem. Eur. J. 13 5106

    [28]

    Civalleri B, Napoli F, Noel Y, Roetti C, Dovesi R 2006 Cryst. Eng. Comm. 8 364

    [29]

    Lin C K, Zhao D, Gao W Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D J 2012 Inorg. Chem. 51 9039

  • [1] 唐利斌, 姬荣斌, 宋立媛, 陈雪梅, 李永亮, 荣百炼, 宋炳文. 有机红外半导体酞菁铒的掺杂及电学性质研究. 物理学报, 2008, 57(11): 7244-7251. doi: 10.7498/aps.57.7244
    [2] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质. 物理学报, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [3] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质. 物理学报, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [4] 王忠兵, 李明德, 陈祖耀, 杨宏顺, 阮可青, 曹烈兆. 在氧-水蒸气存在下单相Sr2(Gd,Ce)2Cu2RuO10的合成及其电学性质. 物理学报, 2003, 52(10): 2596-2600. doi: 10.7498/aps.52.2596
    [5] 陈军, 王晓中, 林理彬, 何捷. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [6] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [7] 王雪飞, 马静婕, 焦照勇, 张现周. Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究. 物理学报, 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [8] 丁迎春, 潘洪哲, 沈益斌, 祝文军, 徐 明, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [9] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 1-10. doi: 10.7498/aps.69.20191194
    [10] 程新路, 李德华, 朱晓玲, 苏文晋. PtN2的结构和力学性质的第一性原理计算. 物理学报, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
  • 引用本文:
    Citation:
计量
  • 文章访问数:  419
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-06-10
  • 刊出日期:  2016-09-05

金属有机框架材料力学、电学及其应变调控特性的第一原理研究

  • 1. 中国工程物理研究院总体工程研究所, 绵阳 621900;
  • 2. 浙江大学航空航天学院应用力学研究所, 杭州 310027
  • 通信作者: 闫亚宾, yanyabin@gmail.com
    基金项目: 

    中国工程物理研究院总体工程研究所科技专项(批准号:2013KJZ02)、国家自然科学基金(批准号:11302205)、中国工程物理研究院院长基金(批准号:2014-1-097)和中国工程物理研究院重点学科项目计算固体力学资助的课题.

摘要: 本研究利用基于密度泛函理论的第一原理方法研究了典型金属有机框架材料-MOF-5的力学、电学性质及其应变调控特性. 通过对MOF-5材料施加不同类型的应变,系统地研究了MOF-5材料的力学特性,获得了MOF-5的弹性常数、杨氏模量等基本力学参数. 另一方面,通过分析能带结构等特征得到了MOF-5的本征电学特性,计算得到的MOF-5 的禁带带宽为3.49 eV,属于宽禁带半导体. 对MOF-5电学性质的应变调控特性研究发现,外界应变会显著降低MOF-5的禁带带宽,提高其导电性. 通过进一步分析其电子态密度、共价键键长等的变化,发现外界应变会引起MOF-5有机配体中共价键强度的降低,继而导致材料禁带带宽的减小. 研究从理论上定量揭示了外部应变对MOF-5电学性质的调控行为,为基于MOF-5的气氛传感器优化设计和性能评估等提供了重要的理论依据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回