搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面缺陷的方向性对漏磁场分布的影响

吴德会 刘志天 王晓红 苏令锌

引用本文:
Citation:

表面缺陷的方向性对漏磁场分布的影响

吴德会, 刘志天, 王晓红, 苏令锌

Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution

Wu De-Hui, Liu Zhi-Tian, Wang Xiao-Hong, Su Ling-Xin
PDF
导出引用
  • 由于漏磁检测(MFL)具有操作简单、成本低廉、信号稳定等特点,已被广泛应用于铁磁材料的无损检测.在MFL领域,实现缺陷评估的关键是对漏磁信号与缺陷几何特征之间的关系进行准确描述.本文建立了一个任意方向的表面缺陷漏磁场分布的三维数学模型.首先,将表面缺陷近似为一个有限长的矩形槽来进行描述;然后,从理论上分析了不同缺陷方向下槽壁磁荷密度的变化规律;最后,通过矢量合成得到了有向缺陷的漏磁场分布.开展了仿真和实验,对缺陷在不同磁化方向下的漏磁场分布进行了分析.实验结果表明,缺陷的MFL分布与方向性密切相关.随着与磁化方向夹角增大,缺陷漏磁场水平分量亦增加,单峰性也越突出;但垂直分量却随夹角的增大而呈现双峰分布.所建模型能有效地描述缺陷的方向性对漏磁场分布影响,对优化MFL检测器设计和提高缺陷评估质量有实际指导意义.
    Magnetic flux leakage (MFL) has been widely applied to the nondestructive testing (NDT) of ferromagnetic materials due to its simple operation, low cost, and steady signal. Its defects are evaluated based on the relationship between MFL signal and the geometrical characteristic of defect. In this paper, a three-dimensional (3D) mathematical model is developed for the magnetic leakage field of surface-breaking defects that are arbitrarily oriented inside ferromagnetic material. Firstly, a finite-length rectangular slot is used as a simplified and convenient representation of a surface-breaking defect. Then, the magnetic charge densities of slot walls in different surface-breaking orientations are analyzed theoretically. The distribution of the magnetic leakage field can ultimately be derived by vector synthesis. Both simulations and experiments are conducted to analyze the magnetic leakage field distributions in different magnetization orientations. The results show that with increasing the angle between the defect orientation and the magnetic field, the horizontal component of the leakage magnetic field increases as demonstrated by increasing the prominence of its single peak. At the same time, however, the vertical component shows a bimodal distribution. The proposed model can effectively describe the influence of defect orientation on MFL signals, which can offer practical guidelines for optimizing MFL detectors and improving defect assessment.
      通信作者: 王晓红, wxh@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51177141,51677158)资助的课题.
      Corresponding author: Wang Xiao-Hong, wxh@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51177141,51677158).
    [1]

    Wu D H, Huang S L, Zhao W, Xin J J 2009 Acta Petrol Sin. 30 136 (in Chinese)[吴德会, 黄松岭, 赵伟, 辛君君 2009 石油学报 30 136]

    [2]

    Zatsepin N N, Shcherbinin V E 1966 Defektoskopiya5 50

    [3]

    Wu J, Sun Y, Kang Y, Yang Y 2015 MAG IEEE Trans. Mechatron. 51 1

    [4]

    Wang C X, Zhang W M, Song J G, Li W C, Chen K 2007 J. Beijing Inst. Technol. 27 395 (in Chinese)[王朝霞, 张卫民, 宋金刚, 李文春, 陈克 2007 北京理工 大学学报 27 395]

    [5]

    Wang B B, Liao C R, Han L, Xie Y S, Shi X C 2011 Chin. J. Sens. Actuat. 24 238 (in Chinese)[汪滨波, 廖昌荣, 韩亮, 谢 云山, 石祥聪 2011 传感器技术学报 24 238]

    [6]

    Yong L, Wilson J, Gui Y T 2007 NDT & E Int. 40 357

    [7]

    Wu B, Wang Y J, Liu X C, C F He 2015 Smart. Mater. Struct. 24 075007

    [8]

    Liu B Y, Qi Y G 2010 J. Shenyang Univ. Technol. 32 187 (in Chinese)[刘保余, 綦耀光 2010 沈阳工业大学学报 32 187]

    [9]

    Du Z Y, Ruan J J, Yu S F, Liu B 2007 Proc. Chin. Soc. Electr. Eng. 27 108 (in Chinese)[杜志叶, 阮江军, 余世峰, 刘兵 2007 中国电机工程学报 27 108]

    [10]

    Zhang Y, Ye Z F, Wang C 2009 NDT & E Int. 42 369

    [11]

    Mandache C, Clapham L 2003 J. Phys. D:Appl. 36 24

    [12]

    Liao C R, Liao Z, Han L, Wang B B, Shi X C, Xie Y S 2012 J. Chongqing Univ. 35 76 (in Chinese)[廖昌荣, 廖峥, 韩亮, 汪滨波, 石祥聪, 谢云山 2012 重庆大学学报 35 76]

    [13]

    Liu M Q, Xu Z S, Wang J B 2005 Chin. Mech. Eng. 16 952 (in Chinese)[刘美全, 徐章遂, 王建斌 2005 中国机械工程 16 952]

    [14]

    Xu Z S, Xu Y, Wang J B 2005 Quantitative Detection Principle and Application of Crack in MFL Method (Vol. 1) (Beijing:National Defend Industry Press) p124 (in Chinese)[徐章遂, 徐英, 王建斌 2005 裂纹漏磁定量检测原理与应用(上卷)(北京:国防工业 出版社) 第124页]

    [15]

    Edwards C, Palmer S B 1986 J. Phys. D:Appl. Phys. 19 657

    [16]

    Liu J J, Sun J J, Hu H Y, Xing X S 2005 Acta Phys. Sin. 54 2414 (in Chinese)[刘晶晶, 孙俊君, 胡海云, 邢修三 2005 物理学报 54 2414]

    [17]

    Wu D H, Liu Z L, Zhang Z Y, Xia X H 2013 J. Basic Sci. Eng. 21 1188 (in Chinese)[吴德会, 柳振凉, 张忠远, 夏晓昊 2013 应用基础与工程科学学报 21 1188]

    [18]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese)[何永周 2013 物理学报 62 084105]

  • [1]

    Wu D H, Huang S L, Zhao W, Xin J J 2009 Acta Petrol Sin. 30 136 (in Chinese)[吴德会, 黄松岭, 赵伟, 辛君君 2009 石油学报 30 136]

    [2]

    Zatsepin N N, Shcherbinin V E 1966 Defektoskopiya5 50

    [3]

    Wu J, Sun Y, Kang Y, Yang Y 2015 MAG IEEE Trans. Mechatron. 51 1

    [4]

    Wang C X, Zhang W M, Song J G, Li W C, Chen K 2007 J. Beijing Inst. Technol. 27 395 (in Chinese)[王朝霞, 张卫民, 宋金刚, 李文春, 陈克 2007 北京理工 大学学报 27 395]

    [5]

    Wang B B, Liao C R, Han L, Xie Y S, Shi X C 2011 Chin. J. Sens. Actuat. 24 238 (in Chinese)[汪滨波, 廖昌荣, 韩亮, 谢 云山, 石祥聪 2011 传感器技术学报 24 238]

    [6]

    Yong L, Wilson J, Gui Y T 2007 NDT & E Int. 40 357

    [7]

    Wu B, Wang Y J, Liu X C, C F He 2015 Smart. Mater. Struct. 24 075007

    [8]

    Liu B Y, Qi Y G 2010 J. Shenyang Univ. Technol. 32 187 (in Chinese)[刘保余, 綦耀光 2010 沈阳工业大学学报 32 187]

    [9]

    Du Z Y, Ruan J J, Yu S F, Liu B 2007 Proc. Chin. Soc. Electr. Eng. 27 108 (in Chinese)[杜志叶, 阮江军, 余世峰, 刘兵 2007 中国电机工程学报 27 108]

    [10]

    Zhang Y, Ye Z F, Wang C 2009 NDT & E Int. 42 369

    [11]

    Mandache C, Clapham L 2003 J. Phys. D:Appl. 36 24

    [12]

    Liao C R, Liao Z, Han L, Wang B B, Shi X C, Xie Y S 2012 J. Chongqing Univ. 35 76 (in Chinese)[廖昌荣, 廖峥, 韩亮, 汪滨波, 石祥聪, 谢云山 2012 重庆大学学报 35 76]

    [13]

    Liu M Q, Xu Z S, Wang J B 2005 Chin. Mech. Eng. 16 952 (in Chinese)[刘美全, 徐章遂, 王建斌 2005 中国机械工程 16 952]

    [14]

    Xu Z S, Xu Y, Wang J B 2005 Quantitative Detection Principle and Application of Crack in MFL Method (Vol. 1) (Beijing:National Defend Industry Press) p124 (in Chinese)[徐章遂, 徐英, 王建斌 2005 裂纹漏磁定量检测原理与应用(上卷)(北京:国防工业 出版社) 第124页]

    [15]

    Edwards C, Palmer S B 1986 J. Phys. D:Appl. Phys. 19 657

    [16]

    Liu J J, Sun J J, Hu H Y, Xing X S 2005 Acta Phys. Sin. 54 2414 (in Chinese)[刘晶晶, 孙俊君, 胡海云, 邢修三 2005 物理学报 54 2414]

    [17]

    Wu D H, Liu Z L, Zhang Z Y, Xia X H 2013 J. Basic Sci. Eng. 21 1188 (in Chinese)[吴德会, 柳振凉, 张忠远, 夏晓昊 2013 应用基础与工程科学学报 21 1188]

    [18]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese)[何永周 2013 物理学报 62 084105]

  • [1] 李海宁, 禹利达, 甘仁杰, 张伟斌, 杨占锋. 颗粒填充复合炸药裂纹缺陷的高信噪比超声成像方法. 物理学报, 2023, 72(15): 154301. doi: 10.7498/aps.72.20230522
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 周丽丽, 胡欣悦, 穆中林, 张蕤, 郑悦. 任意方向电偶极子在水平分层受限空间中的远区辐射场求解. 物理学报, 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [4] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析. 物理学报, 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [5] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [6] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [7] 何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐. 原子模拟钛中微孔洞的结构及其失效行为. 物理学报, 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [8] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [9] 曹钟, 杜平安, 聂宝林, 任丹, 张其道. 基于磁偶极子阵列的印制电路板干扰源等效建模方法. 物理学报, 2014, 63(12): 124102. doi: 10.7498/aps.63.124102
    [10] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析. 物理学报, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [11] 蒋双凤, 孔凡敏, 李康, 高晖. 光偶极天线的远场方向性研究. 物理学报, 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
    [12] 杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓. 基于介质谐振器原理的左手材料设计. 物理学报, 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [13] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [14] 邵宇飞, 王绍青. 基于准连续介质方法模拟纳米多晶体Ni中裂纹的扩展. 物理学报, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [15] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [16] 孙浩亮, 宋忠孝, 徐可为. 基体对应力诱导的纳米晶W膜开裂行为的影响. 物理学报, 2008, 57(8): 5226-5231. doi: 10.7498/aps.57.5226
    [17] 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究. 物理学报, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [18] 王锐. 裂纹与夹杂物的互作用. 物理学报, 1990, 39(12): 1908-1914. doi: 10.7498/aps.39.1908
    [19] 龙期威, 王屴. 位错在裂纹顶端的象力. 物理学报, 1984, 33(9): 1337-1340. doi: 10.7498/aps.33.1337
    [20] 邢修三. 微裂纹演化的随机模型. 物理学报, 1981, 30(12): 1615-1623. doi: 10.7498/aps.30.1615
计量
  • 文章访问数:  5931
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-11-01
  • 刊出日期:  2017-02-05

/

返回文章
返回