搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载极化阵列多输入多输出雷达极化空时自适应处理性能分析

王珽 赵拥军 赖涛 王建涛

机载极化阵列多输入多输出雷达极化空时自适应处理性能分析

王珽, 赵拥军, 赖涛, 王建涛
PDF
导出引用
导出核心图
  • 为进一步提升机载多输入多输出(MIMO)雷达空时自适应处理(STAP)的杂波抑制与目标检测性能,本文提出基于极化阵列MIMO雷达的极化空时自适应处理(PSTAP)方法.首先,将新型的极化阵列应用于机载MIMO雷达,建立了机载极化阵列MIMO雷达极化空时自适应处理的信号模型.然后,基于分辨格思想,将杂波影响等效为与杂波自由度相关的独立杂波点源的形式,得到极化阵列MIMO雷达极化空时自适应处理协方差矩阵的等价表示.进而,结合上述等价协方差矩阵,对极化阵列MIMO雷达极化空时自适应处理的输出信杂噪比(SCNR)性能进行了推导分析,讨论了其中极化、空、时匹配系数的影响.理论分析表明,通过利用附加的极化域信息,极化阵列MIMO雷达极化空时自适应处理相比于传统MIMO-STAP能够有效提升杂波抑制性能,更有利于慢速运动目标检测,并且目标与杂波极化参数差别越大,输出SCNR的性能改善效果越明显.仿真结果验证了本文所提极化阵列MIMO雷达极化空时自适应处理方法的有效性与优越性.
      通信作者: 王珽, wangtingsp@163.com
    • 基金项目: 国家自然科学基金(批准号:61501513,41301481)资助的课题.
    [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 物理学报 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 物理学报 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 物理学报 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • [1]

    Yang Y, Wang B Z, Ding S 2016 Chin. Phys. B 25 050101

    [2]

    Du Z C, Tang B, Liu L X 2006 Chin. Phys. 15 2481

    [3]

    Hai L, Zhang Y R, Pan C L 2013 Acta Phys. Sin. 62 238402 (in Chinese)[海凛, 张业荣, 潘灿林 2013 物理学报 62 238402]

    [4]

    Bliss D W, Forsythe K W 2003 Proceedings of 37th Asilomar Conference on Signals, System, and Computers Pacific Grove, USA, November 9-12, 2003 p54

    [5]

    Fishler E, Haimovich A, Blum R S, Chizhik D, Cimini L J, Valenzuela R 2004 Proceedings of IEEE Radar Conference Philadelphia, USA, April 26-29, 2004 p71

    [6]

    Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R 2006 IEEE Trans. Signal Process. 54 823

    [7]

    Haimovich A, Blum R S, Cimini L J 2008 IEEE Signal Process. Mag. 25 116

    [8]

    Li J, Stoica P 2007 IEEE Signal Process. Mag. 24 106

    [9]

    Wen F Q, Zang G, Ben D 2015 Chin. Phys. B 24 110201

    [10]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese)[黄聪, 孙大军, 张殿伦, 滕婷婷 2014 物理学报 63 188401]

    [11]

    Wang T, Zhao Y J, Hu T 2015 J. Radars 4 136 (in Chinese)[王珽, 赵拥军, 胡涛 2015 雷达学报 4 136]

    [12]

    Brennan L E, Reed I S 1973 IEEE Trans. Aerosp. Electron. Syst. 9 237

    [13]

    Guerci J R 2003 Space Time Adaptive Processing for Radar (Norwood, MA:Artech House, Inc.) pp3-55

    [14]

    Klemm R 2002 Principles of Space-Time Adaptive Processing (London:The Institution of Electrical Engineers) pp2-45

    [15]

    Wang Y L, Peng Y N 2000 Space-Time Adaptive Processing (Beijing:Tsinghua University Press) pp1-9 (in Chinese)[王永良, 彭应宁 2000 空时自适应信号处理 (北京:清华大学出版社) 第1–9页]

    [16]

    Wang Y L, Li T Q 2008 J. China Acad. Electron. Inf. Technol. 3 271 (in Chinese)[王永良, 李天泉 2008 中国电子科学研究院学报 3 271]

    [17]

    Zhang L, Xu Y G 2015 Modern Radar 37 1 (in Chinese)[张良, 徐艳国 2015 现代雷达 37 1]

    [18]

    Chen C Y, Vaidyanathan P P 2008 IEEE Trans. Signal Process. 56 623

    [19]

    Wang W, Chen Z, Li X, Wang B 2016 IET Radar Sonar Navig. 10 459

    [20]

    Zhang W, He Z S, Li J, Li C H 2015 IET Radar Sonar Navig. 9 772

    [21]

    Wu D J, Xu Z H, Zhang L, Xiong Z Y, Xiao S P 2012 Prog. Electromagn. Res. 129 579

    [22]

    Wu D J, Xu Z H, Xiong Z Y, Zhang L, Xiao S P 2012 Acta Electron. Sin. 40 1430 (in Chinese)[吴迪军, 徐振海, 熊子源, 张亮, 肖顺平 2012 电子学报 40 1430]

    [23]

    Du W T, Liao G S, Yang Z W, Xin Z H 2014 Acta Electron. Sin. 42 523 (in Chinese)[杜文韬, 廖桂生, 杨志伟, 辛志慧 2014 电子学报 42 523]

    [24]

    Zhao X B, Yan W, Wang Y Q, Lu W, Ma S 2014 Acta Phys. Sin. 63 218401 (in Chinese)[赵现斌, 严卫, 王迎强, 陆文, 马烁 2014 物理学报 63 218401]

    [25]

    Xu Y G, Xu Z W, Gong X F 2013 Signal Processing Based on Polarization Sensitive Array (Beijing:Beijing Institute of Technology Press) pp1-21 (in Chinese)[徐友根, 刘志文, 龚晓峰 2013 极化敏感阵列信号处理 (北京:北京理工大学出版社) 第1–21页]

    [26]

    Wang X S 2016 J. Radars 5 119 (in Chinese)[王雪松 2016 雷达学报 5 119]

    [27]

    Gu C, He J, Li H, Zhu X 2013 Signal Process. 93 2103

    [28]

    Zheng G M, Yang M L, Chen B X, Yang R X 2012 J. Electron. Inf. Technol. 34 2635 (in Chinese)[郑桂妹, 杨明磊, 陈伯孝, 杨瑞兴 2012 电子与信息学报 34 2635]

    [29]

    Wang K R, Zhu X H, He J 2012 J. Electron. Inf. Technol. 34 160 (in Chinese)[王克让, 朱晓华, 何劲 2012 电子与信息学报 34 160]

    [30]

    Li N, Cui G, Kong L, Liu Q H 2015 IET Radar Sonar Navig. 9 285

    [31]

    Gogineni S, Nehorai A 2010 IEEE Trans. Signal Process. 58 1689

    [32]

    Wu Y, Tang J, Peng Y N 2011 IEEE Trans. Aerosp. Electron. Syst. 47 569

    [33]

    Zhang X D 2013 Matrix Analysis and Applications (Second Edition) (Beijing:Tsinghua University Press) pp26-72 (in Chinese)[张贤达 2013 矩阵分析与应用(第2版) (北京:清华大学出版社) 第26–72页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1090
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-02-05

机载极化阵列多输入多输出雷达极化空时自适应处理性能分析

  • 1. 信息工程大学导航与空天目标工程学院, 郑州 450001
  • 通信作者: 王珽, wangtingsp@163.com
    基金项目: 

    国家自然科学基金(批准号:61501513,41301481)资助的课题.

摘要: 为进一步提升机载多输入多输出(MIMO)雷达空时自适应处理(STAP)的杂波抑制与目标检测性能,本文提出基于极化阵列MIMO雷达的极化空时自适应处理(PSTAP)方法.首先,将新型的极化阵列应用于机载MIMO雷达,建立了机载极化阵列MIMO雷达极化空时自适应处理的信号模型.然后,基于分辨格思想,将杂波影响等效为与杂波自由度相关的独立杂波点源的形式,得到极化阵列MIMO雷达极化空时自适应处理协方差矩阵的等价表示.进而,结合上述等价协方差矩阵,对极化阵列MIMO雷达极化空时自适应处理的输出信杂噪比(SCNR)性能进行了推导分析,讨论了其中极化、空、时匹配系数的影响.理论分析表明,通过利用附加的极化域信息,极化阵列MIMO雷达极化空时自适应处理相比于传统MIMO-STAP能够有效提升杂波抑制性能,更有利于慢速运动目标检测,并且目标与杂波极化参数差别越大,输出SCNR的性能改善效果越明显.仿真结果验证了本文所提极化阵列MIMO雷达极化空时自适应处理方法的有效性与优越性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回