搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eu原子4f76snlRydberg态的研究

常鑫鑫 沈礼 武晓瑞 戴长建

Eu原子4f76snlRydberg态的研究

常鑫鑫, 沈礼, 武晓瑞, 戴长建
PDF
导出引用
导出核心图
  • 利用三步双色共振激发技术和三步三色孤立实激发技术,系统地研究了铕原子在4225044510 cm-1能域内的光谱特性,提供了该能域内56个束缚高激发态的光谱信息.为了能确定这些态的光谱归属,进行了两方面的探索:第一,观察能否利用孤立实激发技术,把处于这些态上的铕原子进一步共振激发到自电离态,从而推断这些态属于单电子激发的束缚Rydberg态还是属于双电子激发的价态,并对Rydberg态的电子组态进行了光谱确认;第二,通过计算这些态相对于各个电离阈的量子亏损并观察它们分别收敛于哪个电离阈,以便获取其主量子数的信息.最后,设计并采用了三种不同的激发路径,分别将原子布居到同一高激发能域并探测它们在该能域的光电离光谱.通过比较这些光谱的异同并结合上述激发路径所对应的跃迁选择定则,便可惟一地确定这些高激发态的总角动量.研究发现:所探测到的高激发束缚态只有三个属于单电子激发的束缚Rydberg态,其余都是价态.本文确定了这三个Rydberg态的电子组态和原子状态.
      通信作者: 戴长建, daicj@126.com
    • 基金项目: 国家自然科学基金(批准号:11174218)资助的课题.
    [1]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [2]

    Lpez M F, Gutirrez A 1997 J. Phys.: Condens. Matter 9 6113

    [3]

    Li M, Dai C J, Xie J 2011 Sci. China: Phys. Mech. Astron. 54 1124

    [4]

    Li M, Dai C J, Xie J 2011 J. Quantat. Spectrosc. Rad. Transfer 112 793

    [5]

    Li M, Dai C J, Xie J 2011 Chin. Phys. B 20 063204

    [6]

    Bailey J, Kilkenny J D, Lee Y, Maxon S, Scofield J H, Weber D 1987 Phys. Rev. A 35 2578

    [7]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [8]

    Nakhate S G, Razvi M A, Connerade J P, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5191

    [9]

    Nakhate S G, Razvi M A N, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 191

    [10]

    Nakhate S G, Razvi M A N, Bhale G L, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [11]

    Dong C, Shen L, Yang J H, Dai C J 2014 Acta Opt. Sin. 34 702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 702001]

    [12]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 杨金红, 戴长建 2014 物理学报 63 133202]

    [13]

    Zhang K, Shen L, Dong C, Dai C J 2015 Chin. Phys. B 24 103024

    [14]

    Yan J G, Shen L, Liang H R, Dai C J 2015 Chin. Phys. B 24 083203

    [15]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy LevelsThe Rare-Earth Elements (Washington: National Bureau of Standards, US Department of Commerce) p185

    [16]

    Xie J, Dai C J, Li M 2010 Acta Opt. Sin. 30 2142 (in Chinese) [谢军, 戴长建, 李鸣 2010 光学学报 30 2142]

    [17]

    Xiao Y, Dai C J, Qin W J 2009 Chin. Phys. B 18 1833

  • [1]

    Dai C J, Schinn G W, Gallagher T F 1990 Phys. Rev. A 42 223

    [2]

    Lpez M F, Gutirrez A 1997 J. Phys.: Condens. Matter 9 6113

    [3]

    Li M, Dai C J, Xie J 2011 Sci. China: Phys. Mech. Astron. 54 1124

    [4]

    Li M, Dai C J, Xie J 2011 J. Quantat. Spectrosc. Rad. Transfer 112 793

    [5]

    Li M, Dai C J, Xie J 2011 Chin. Phys. B 20 063204

    [6]

    Bailey J, Kilkenny J D, Lee Y, Maxon S, Scofield J H, Weber D 1987 Phys. Rev. A 35 2578

    [7]

    Bhattacharyya S, Razvi M A N, Cohen S, Nakhate S G 2007 Phys. Rev. A 76 012502

    [8]

    Nakhate S G, Razvi M A, Connerade J P, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 5191

    [9]

    Nakhate S G, Razvi M A N, Ahmad S A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 191

    [10]

    Nakhate S G, Razvi M A N, Bhale G L, Ahmad S A 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1439

    [11]

    Dong C, Shen L, Yang J H, Dai C J 2014 Acta Opt. Sin. 34 702001 (in Chinese) [董程, 沈礼, 杨金红, 戴长建 2014 光学学报 34 702001]

    [12]

    Liang H R, Shen L, Jing H, Dai C J 2014 Acta Phys. Sin. 63 133202 (in Chinese) [梁洪瑞, 沈礼, 杨金红, 戴长建 2014 物理学报 63 133202]

    [13]

    Zhang K, Shen L, Dong C, Dai C J 2015 Chin. Phys. B 24 103024

    [14]

    Yan J G, Shen L, Liang H R, Dai C J 2015 Chin. Phys. B 24 083203

    [15]

    Martin W C, Zalubas R, Hagan L 1978 Atomic Energy LevelsThe Rare-Earth Elements (Washington: National Bureau of Standards, US Department of Commerce) p185

    [16]

    Xie J, Dai C J, Li M 2010 Acta Opt. Sin. 30 2142 (in Chinese) [谢军, 戴长建, 李鸣 2010 光学学报 30 2142]

    [17]

    Xiao Y, Dai C J, Qin W J 2009 Chin. Phys. B 18 1833

  • [1] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量. 物理学报, 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [2] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [3] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [4] 杨变, 杨治虎, 徐秋梅, 郭义盼, 武晔虹, 宋张勇, 蔡晓红. 低速84Kr15+, 17+离子轰击GaAs单晶. 物理学报, 2014, 63(5): 053201. doi: 10.7498/aps.63.053201
    [5] 肖颖, 戴长建, 赵洪英, 秦文杰. 铕原子奇宇称高激发态共振电离光谱的研究. 物理学报, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [6] 赵健东, 辛洁. 高激发态原子的相干效应 . 物理学报, 2012, 61(19): 193302. doi: 10.7498/aps.61.193302
    [7] 朱熙文. 高激发态钠原子的量子拍实验的某些分析. 物理学报, 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
    [8] 徐雷, 赵有源, 王国益, 王兆永. Al原子高激发态nf2F光谱与Stark效应观察. 物理学报, 1989, 38(10): 1658-1664. doi: 10.7498/aps.38.1658
    [9] 赵艳红, 戴长建, 野仕伟. Sm原子的偶宇称高激发态的光谱研究. 物理学报, 2012, 61(3): 033201. doi: 10.7498/aps.61.033201
    [10] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁. 物理学报, 2012, 61(4): 043101. doi: 10.7498/aps.61.043101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  235
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-20
  • 刊出日期:  2017-05-05

Eu原子4f76snlRydberg态的研究

  • 1. 天津理工大学理学院, 天津 300384;
  • 2. 显示技术与光电器件教育部重点实验室, 天津 300384
  • 通信作者: 戴长建, daicj@126.com
    基金项目: 

    国家自然科学基金(批准号:11174218)资助的课题.

摘要: 利用三步双色共振激发技术和三步三色孤立实激发技术,系统地研究了铕原子在4225044510 cm-1能域内的光谱特性,提供了该能域内56个束缚高激发态的光谱信息.为了能确定这些态的光谱归属,进行了两方面的探索:第一,观察能否利用孤立实激发技术,把处于这些态上的铕原子进一步共振激发到自电离态,从而推断这些态属于单电子激发的束缚Rydberg态还是属于双电子激发的价态,并对Rydberg态的电子组态进行了光谱确认;第二,通过计算这些态相对于各个电离阈的量子亏损并观察它们分别收敛于哪个电离阈,以便获取其主量子数的信息.最后,设计并采用了三种不同的激发路径,分别将原子布居到同一高激发能域并探测它们在该能域的光电离光谱.通过比较这些光谱的异同并结合上述激发路径所对应的跃迁选择定则,便可惟一地确定这些高激发态的总角动量.研究发现:所探测到的高激发束缚态只有三个属于单电子激发的束缚Rydberg态,其余都是价态.本文确定了这三个Rydberg态的电子组态和原子状态.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回