搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速模型尾迹流场及其电磁散射特性相似性实验研究

马平 石安华 杨益兼 于哲峰 梁世昌 黄洁

高速模型尾迹流场及其电磁散射特性相似性实验研究

马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁
PDF
导出引用
导出核心图
  • 高速目标再入大气层或在临近空间飞行时,空气电离形成的等离子体鞘套和尾迹对目标的雷达散射特性会产生影响.为了研究不同模型尾迹流场及其电磁散射特性规律和相似性,以氧化铝球模型为研究对象,在弹道靶设备上开展了双尺度参数相同的条件下高速球模型尾迹流场及其电磁散射相似性实验研究.由二级轻气炮发射模型,模型直径分别为8.0、10.0、12.0、15.0 mm,速度约6 km/s,靶室压力分别为6.3,5.0,4.2,3.3 kPa,采用阴影照相系统测量模型激波脱体距离、电子密度测量系统测量模型尾迹的电子密度分布、X波段单站雷达系统测量在视角为40的模型及流场的雷达散射截面(RCS)分布.实验结果表明: 在速度不变、双尺度参数相同的条件下,随着模型尺寸的增加,激波脱体距离逐渐增加,激波脱体距离与模型直径之比近似相同;不同模型尾迹电子密度测量曲线的趋势和数量级一致,表明不同模型的尾迹流场适用于双缩尺律;不同尺寸模型尾迹的总体RCS 与分布RCS均不相同,表明不同模型尾迹的电磁散射不适用于二元缩尺律;高速球模型全目标电磁散射能量分布在模型及其绕流区域、等离子体尾迹区域;高速球模型全目标电磁散射能量在模型及绕流场区域出现1 个强散射中心,在模型湍流尾迹区域出现多个散射中心;高速球模型尾迹的RCS测量信号呈现随机性分布特性,幅度脉动和频率脉动均没有周期性;随着模型尺寸的增加,模型尾迹的总体RCS增加,尾迹脉动频率的变化范围减小.
      通信作者: 马平, hbmaping@263.net
    [1]

    Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]

    [2]

    Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]

    [3]

    Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]

    [4]

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]

    [5]

    Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]

    [6]

    Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]

    [7]

    Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]

    [8]

    Martin J J 1966 Atomosph. Reentry 264

    [9]

    Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [10]

    Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]

    [11]

    Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [12]

    Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]

    [13]

    Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]

    [14]

    Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]

    [15]

    Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]

    [16]

    Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference

    [17]

    Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference

    [18]

    Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445

    [19]

    Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76

    [20]

    Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905

    [21]

    Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)

    [22]

    Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]

    [23]

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205]

    [24]

    Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]

  • [1]

    Huang Y, Chen Z S, Xu J W 2008 Ship. Elec. Counter. 31 969 (in Chinese) [黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 969]

    [2]

    Wu J M, Gao B Q 1997 Chin. J. Rad. Sci. 12 26 (in Chinese) [吴建明, 高本庆 1997 电波科学学报 12 26]

    [3]

    Zhu F, L Q Z 2008 Modern. Radar. 30 14 (in Chinese) [朱方, 吕琼之 2008 现代雷达 30 14]

    [4]

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern. Radar. 36 83 (in Chinese) [周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83]

    [5]

    Niu J Y, Yu M 1999 Acta Mech. Sin. 31 434 (in Chinese) [牛家玉, 于明 1999 力学学报 31 434]

    [6]

    Li Y 2014 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [李勇 2014 硕士学位论文 (南京:南京邮电大学)]

    [7]

    Ma P, Shi A H, Yang Y J, Yu Z F, Bu S Q, Huang J 2015 High. Pow. Laser. Par. Beams 27 073201 (in Chinese) [马平, 石安华, 杨益兼, 于哲峰, 部绍清, 黄洁 2015 强激光与粒子束 27 073201]

    [8]

    Martin J J 1966 Atomosph. Reentry 264

    [9]

    Zhang B X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [ 张宝贤 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [10]

    Wang W M, Zhang Y H, Jia M, Song H M, Chang L, Wu Y 2014 High Vol. Engineer. 40 2084 (in Chinese) [王卫民, 张艺瀚, 贾敏, 宋慧敏, 苌磊, 吴云 2014 高压电技术 40 2084]

    [11]

    Yang L X, Shen D X, Shi W D 2013 Acta Phys. Sin. 62 104101 (in Chinese) [杨利霞, 沈丹华, 施卫东 2013 物理学报 62 104101]

    [12]

    Zhang D W 2013 J. Sichuan Univ. 44 119 (in Chinese) [张大跃 2013 四川大学学报 44 119]

    [13]

    Chen M S, Kong M, Shi J J, Wu X L, Sha W 2011 Chin. J. Radio Sci. 26 216 (in Chinese) [陈明生, 孔勐, 石晶晶, 吴先良, 沙威 2011 电波科学学报 26 216]

    [14]

    Wu X P, Shi J M, Du S M, Gao Y F, Dang K Z 2012 Chin. J. Vacu. Sci. Technol. 32 244 (in Chinese) [吴小坡, 时家明, 杜石明, 高永芳, 党可征 2012 真空科学与技术学报 32 244]

    [15]

    Yu Z F, Bu S Q, Shi A H, Liang S C, Ma P, Huang J 2014 Acta Aerodyn. Sin. 32 57 (in Chinese) [于哲峰, 部绍清, 石安华, 梁世昌, 马平, 黄洁 2014 空气动力学学报 32 57]

    [16]

    Richard A H 1992 AIAA 17th Aerospace Ground Testing Conference

    [17]

    Landrum D B, Hayami R A 1994 AIAA 18th Aerospace Ground testing Conference

    [18]

    Keidar M, Kim M, Boyd I D 2008 J. Space Rockets 45 445

    [19]

    Savino R, Paterna D, M De S F 2010 Open Aero. Engin. J. 3 76

    [20]

    Lin L, Wu B, Wu C K 2003 Plasma Sci. Technol. 5 1905

    [21]

    Chadwick K M, Boyer D W, Andre S N 1996 AD-A317594 (New York: Calspan Corp Buffalo)

    [22]

    Yu M 2000 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Science) (in Chinese) [于明 2000 博士学位论文(北京: 中国科学院力学研究所)]

    [23]

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205 (in Chinese) [金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205]

    [24]

    Zeng X J, Shi A H, Huang J 2007 The Test and Measurement Technology on Aerophysics Ballistic Range (Beijing: National Defense Industry Press) pp3-17 (in Chinese) [曾学军, 石安华, 黄洁 2007 气动物理靶试验与测量技术(第1版) (北京: 国防工业出版社) 第317页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1334
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-02
  • 修回日期:  2017-03-14
  • 刊出日期:  2017-05-05

高速模型尾迹流场及其电磁散射特性相似性实验研究

  • 1. 中国空气动力研究与发展中心, 绵阳 621000
  • 通信作者: 马平, hbmaping@263.net

摘要: 高速目标再入大气层或在临近空间飞行时,空气电离形成的等离子体鞘套和尾迹对目标的雷达散射特性会产生影响.为了研究不同模型尾迹流场及其电磁散射特性规律和相似性,以氧化铝球模型为研究对象,在弹道靶设备上开展了双尺度参数相同的条件下高速球模型尾迹流场及其电磁散射相似性实验研究.由二级轻气炮发射模型,模型直径分别为8.0、10.0、12.0、15.0 mm,速度约6 km/s,靶室压力分别为6.3,5.0,4.2,3.3 kPa,采用阴影照相系统测量模型激波脱体距离、电子密度测量系统测量模型尾迹的电子密度分布、X波段单站雷达系统测量在视角为40的模型及流场的雷达散射截面(RCS)分布.实验结果表明: 在速度不变、双尺度参数相同的条件下,随着模型尺寸的增加,激波脱体距离逐渐增加,激波脱体距离与模型直径之比近似相同;不同模型尾迹电子密度测量曲线的趋势和数量级一致,表明不同模型的尾迹流场适用于双缩尺律;不同尺寸模型尾迹的总体RCS 与分布RCS均不相同,表明不同模型尾迹的电磁散射不适用于二元缩尺律;高速球模型全目标电磁散射能量分布在模型及其绕流区域、等离子体尾迹区域;高速球模型全目标电磁散射能量在模型及绕流场区域出现1 个强散射中心,在模型湍流尾迹区域出现多个散射中心;高速球模型尾迹的RCS测量信号呈现随机性分布特性,幅度脉动和频率脉动均没有周期性;随着模型尺寸的增加,模型尾迹的总体RCS增加,尾迹脉动频率的变化范围减小.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回