搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极

张诚 邓明森 蔡绍洪

基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极

张诚, 邓明森, 蔡绍洪
PDF
导出引用
  • 在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增大电极材料和电解质的接触面积,进而促进电极材料俘获/释放电解质中的粒子(例如电子、离子或者小分子).在此,我们通过简单的水热法联合高温退火实验方案能够大规模制备出镍泡沫支撑的Co3O4多孔纳米结构.无需借助导电胶和粘合剂,在集流器镍泡沫上生长Co3O4多孔纳米结构直接作为超级电容的电极材料.这种多孔纳米结构和一体化设计思路不仅能够有效提高电极的导电性,而且能够有效缩短离子和电子的迁移路径.由于多孔的结构特征和优异的导电性能,Co3O4电极表现出超高比容量(在电流密度为2.5 mAcm-2和5.5 mAcm-2时,比容量分别为1.87 Fcm-2(936 Fg-1)和1.80 Fcm-2(907 Fg-1))、较好的倍率性能(电流密度从2.5 mAcm-2增大到100 mAcm-2时,保留其48.37%的初始电容)和超高的循环稳定性(经历4000次电流密度为10 mAcm-2的循环充放电过程,保留其92.3%的比容量).这种多孔纳米结构和一体化设计思路对设计其他高性能储能器件具有重要的指导意义.
      通信作者: 邓明森, deng@gznc.edu.cn
    • 基金项目: 贵州省普通高等学校低维凝聚态物理重点实验室(批准号:黔教合KY字[2016]002)和贵州省科学技术基金(批准号:黔科合J字[2011]2097号)资助的课题.
    [1]

    Peng X, Peng L L, Wu C Z, Xie Y 2014 Chem. Soc. Rev. 43 3303

    [2]

    Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q 2015 Science 350 1508

    [3]

    Lang X Y, Hirata A, Fujita T, Chen M W 2011 Nat. Nanotechnol. 6 232

    [4]

    Guan C, Liu J L, Wang Y D, Mao L, Fan Z X, Shen Z X, Zhang H, Wang J 2015 ACS Nano 9 5198

    [5]

    Zhang G Q, Lou X W 2013 Adv. Mater. 25 976

    [6]

    Zhang C, Geng X P, Tang S L, Deng M S, Du Y W 2017 J. Mater. Chem. A 5 5912

    [7]

    Feng C, Zhang J F, He Y, Zhong C, Hu W B, Liu L, Deng Y D 2015 ACS Nano 9 1730

    [8]

    Yu M H, Wang Z K, Hou C, Wang Z L, Liang C L, Zhao C Y, Tong Y X, Lu X H, Yang S H 2017 Adv. Mater. 29 1602868

    [9]

    Zhou L, Zhao D Y, Lou X W 2012 Adv. Mater. 24 745

    [10]

    Liu B, Zhang J, Wang X F, Chen G, Chen D, Zhou C W, Shen G Z 2012 Nano Lett. 12 3005

    [11]

    Dubal D P, Ayyad O, Ruiz V, Gmez-Romero P 2015 Chem. Soc. Rev. 44 1777

    [12]

    Zhang C, Huang Y, Tang S L, Deng M S, Du Y W 2017 ACS Energy Lett. 2 759

    [13]

    Yuan C Z, Li J Y, Hou L R, Zhang X G, Shen L F, Lou X W 2012 Adv. Funct. Mater. 22 4592

    [14]

    Yuan C Z, Wu H B, Xie Y, Lou X W 2014 Angew. Chem. Int. Ed. 53 1488

    [15]

    Kang J L, Hirata A, Kang L J, Zhang X M, Hou Y, Chen L Y, Li C, Fujita T, Akagi K, Chen M W 2013 Angew. Chem. Int. Ed. 52 1664

    [16]

    Zhang J, Liu F, Cheng J P, Zhang X B 2015 ACS Appl. Mater. Inter. 7 17630

    [17]

    Zhu J X, Cao L J, Wu Y S, Gong Y J, Liu Z, Hoster H E, Zhang Y H, Zhang S T, Yang S B, Yan Q Y, Ajayan P M, Vajtai R 2013 Nano Lett. 13 5408

  • [1]

    Peng X, Peng L L, Wu C Z, Xie Y 2014 Chem. Soc. Rev. 43 3303

    [2]

    Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q 2015 Science 350 1508

    [3]

    Lang X Y, Hirata A, Fujita T, Chen M W 2011 Nat. Nanotechnol. 6 232

    [4]

    Guan C, Liu J L, Wang Y D, Mao L, Fan Z X, Shen Z X, Zhang H, Wang J 2015 ACS Nano 9 5198

    [5]

    Zhang G Q, Lou X W 2013 Adv. Mater. 25 976

    [6]

    Zhang C, Geng X P, Tang S L, Deng M S, Du Y W 2017 J. Mater. Chem. A 5 5912

    [7]

    Feng C, Zhang J F, He Y, Zhong C, Hu W B, Liu L, Deng Y D 2015 ACS Nano 9 1730

    [8]

    Yu M H, Wang Z K, Hou C, Wang Z L, Liang C L, Zhao C Y, Tong Y X, Lu X H, Yang S H 2017 Adv. Mater. 29 1602868

    [9]

    Zhou L, Zhao D Y, Lou X W 2012 Adv. Mater. 24 745

    [10]

    Liu B, Zhang J, Wang X F, Chen G, Chen D, Zhou C W, Shen G Z 2012 Nano Lett. 12 3005

    [11]

    Dubal D P, Ayyad O, Ruiz V, Gmez-Romero P 2015 Chem. Soc. Rev. 44 1777

    [12]

    Zhang C, Huang Y, Tang S L, Deng M S, Du Y W 2017 ACS Energy Lett. 2 759

    [13]

    Yuan C Z, Li J Y, Hou L R, Zhang X G, Shen L F, Lou X W 2012 Adv. Funct. Mater. 22 4592

    [14]

    Yuan C Z, Wu H B, Xie Y, Lou X W 2014 Angew. Chem. Int. Ed. 53 1488

    [15]

    Kang J L, Hirata A, Kang L J, Zhang X M, Hou Y, Chen L Y, Li C, Fujita T, Akagi K, Chen M W 2013 Angew. Chem. Int. Ed. 52 1664

    [16]

    Zhang J, Liu F, Cheng J P, Zhang X B 2015 ACS Appl. Mater. Inter. 7 17630

    [17]

    Zhu J X, Cao L J, Wu Y S, Gong Y J, Liu Z, Hoster H E, Zhang Y H, Zhang S T, Yang S B, Yan Q Y, Ajayan P M, Vajtai R 2013 Nano Lett. 13 5408

  • [1] 朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖. 基于收缩高密度碳纳米管阵列的柔性固态超级电容器. 物理学报, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [2] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究. 物理学报, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [3] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器. 物理学报, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [4] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [5] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [6] 张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹. 柔性纤维状超级电容器的研究进展. 物理学报, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [7] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 应力对锂离子电池中空碳包覆硅负极电化学性能的影响. 物理学报, 2019, 68(12): 120201. doi: 10.7498/aps.68.20182279
    [8] 王益军, 王六定, 杨敏, 严诚, 王小冬, 席彩萍, 李昭宁. 锥顶碳纳米管的结构稳定性与场致发射性能. 物理学报, 2011, 60(7): 077303. doi: 10.7498/aps.60.077303
    [9] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [10] 张甫龙, 侯晓远, 杨敏, 黄大鸣, 王迅. 多孔硅发光稳定性的改进. 物理学报, 1994, 43(3): 499-504. doi: 10.7498/aps.43.499
    [11] 严诚, 王六定, 杨敏, 刘光清, 王益军. 分层掺B和吸附H2O碳纳米管的结构稳定性及电子场发射性能. 物理学报, 2010, 59(7): 4950-4954. doi: 10.7498/aps.59.4950
    [12] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究. 物理学报, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [13] 刘一星, 全军, 余亚斌. 相干平行板电容器对外场的动态响应. 物理学报, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [14] 孟惠民, 邵光杰, 刘日平, 秦秀娟, 王文魁, 姚玉书. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [15] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [16] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [17] 张凯旺, 孟利军, 肖化平, 唐超, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [18] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [19] 蔺西伟, 夏明霞, 颜 宁, 李红星, 宁乃东, 谢 中. 外加电场作用下碳纳米管结构稳定性及结构修饰研究. 物理学报, 2007, 56(1): 113-116. doi: 10.7498/aps.56.113
    [20] 易双萍, 王 慧, 欧阳玉, 彭景翠. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
  • 引用本文:
    Citation:
计量
  • 文章访问数:  843
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-03-16
  • 刊出日期:  2017-06-05

基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极

  • 1. 贵州师范大学, 贵州省普通高等学校低维凝聚态物理重点实验室, 贵阳 550001;
  • 2. 贵州财经大学信息学院, 贵阳 550025;
  • 3. 贵州师范学院, 贵州省纳米材料模拟与计算重点实验室, 贵阳 550018
  • 通信作者: 邓明森, deng@gznc.edu.cn
    基金项目: 

    贵州省普通高等学校低维凝聚态物理重点实验室(批准号:黔教合KY字[2016]002)和贵州省科学技术基金(批准号:黔科合J字[2011]2097号)资助的课题.

摘要: 在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增大电极材料和电解质的接触面积,进而促进电极材料俘获/释放电解质中的粒子(例如电子、离子或者小分子).在此,我们通过简单的水热法联合高温退火实验方案能够大规模制备出镍泡沫支撑的Co3O4多孔纳米结构.无需借助导电胶和粘合剂,在集流器镍泡沫上生长Co3O4多孔纳米结构直接作为超级电容的电极材料.这种多孔纳米结构和一体化设计思路不仅能够有效提高电极的导电性,而且能够有效缩短离子和电子的迁移路径.由于多孔的结构特征和优异的导电性能,Co3O4电极表现出超高比容量(在电流密度为2.5 mAcm-2和5.5 mAcm-2时,比容量分别为1.87 Fcm-2(936 Fg-1)和1.80 Fcm-2(907 Fg-1))、较好的倍率性能(电流密度从2.5 mAcm-2增大到100 mAcm-2时,保留其48.37%的初始电容)和超高的循环稳定性(经历4000次电流密度为10 mAcm-2的循环充放电过程,保留其92.3%的比容量).这种多孔纳米结构和一体化设计思路对设计其他高性能储能器件具有重要的指导意义.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回