搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有三角自旋环的伊辛-海森伯链的热纠缠

郑一丹 毛竹 周斌

具有三角自旋环的伊辛-海森伯链的热纠缠

郑一丹, 毛竹, 周斌
PDF
导出引用
导出核心图
  • 研究了具有三角自旋环的伊辛-海森伯链在磁场作用下的热纠缠性质.分别讨论了三角自旋环中自旋1/2粒子间相互作用的三种情形,即XXX,XXZ和XYZ海森伯模型.利用转移矩阵方法,数值计算了具有三角自旋环的伊辛-海森伯链的配对纠缠度.计算结果表明,外加磁场强度和温度对系统处于上述三种海森伯模型的热纠缠性质均有重要影响.给出了系统在不同的海森伯模型下,纠缠消失对应的临界温度随磁场强度的变化图,由此可以得到系统存在配对纠缠的参数区域,同时发现在特定的参数区域存在纠缠恢复现象.因此适当调节温度和磁场强度,可以有效调控具有三角自旋环的伊辛-海森伯链热纠缠性质.
      通信作者: 毛竹, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn ; 周斌, maozhu@hubu.edu.cn;binzhou@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274102)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0960)和高等学校博士学科点专项科研基金(批准号:20134208110001)资助的课题.
    [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 物理学报 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 物理学报 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • [1]

    Misguich G, Lhuillier C 2004 Frustrated Spin Systems (Singapore:World Scientific) p229

    [2]

    Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K 2007 Nature Mater. 6 853

    [3]

    Moessner R, Sondhi S L 2001 Phys. Rev. B 63 224401

    [4]

    Schmidt B, Shannon N, Thalmeier P 2006 J. Phys.:Conf. Ser. 51 207

    [5]

    Zhitomirsky M E, Honecker A, Petrenko O A 2000 Phys. Rev. Lett. 85 3269

    [6]

    Lee S, Lee K C 1998 Phys. Rev. B 57 8472

    [7]

    Choi K Y, Matsuda Y H, Nojiri H, Kortz U, Hussain F, Stowe A C, Ramsey C, Dalal N S 2006 Phys. Rev. Lett. 96 107202

    [8]

    Trif M, Troiani F, Stepanenko D, Loss D 2008 Phys. Rev. Lett. 101 217201

    [9]

    Kubo K 1993 Phys. Rev. B 48 10552

    [10]

    Nakamura T, Saika Y 1995 J. Phys. Soc. Jpn. 64 695

    [11]

    Nakamura T, Kubo K 1996 Phys. Rev. B 53 6393

    [12]

    Chen S, Bttner H, Voit J 2003 Phys. Rev. B 67 054412

    [13]

    Guo Y P, Liu Z Q, Xu Y L, Kong X M 2016 Phys. Rev. E 93 052151

    [14]

    Collins M F, Petrenko O A 1997 Can. J. Phys. 75 605

    [15]

    Lecheminant P, Bernu B, Lhuillier C, Pierre L, Sindzingre P 1997 Phys. Rev. B 56 2521

    [16]

    Waldtmann C, Everts H U, Bernu B, Lhuillier C, Sindzingre P, Lecheminant P, Pierre L 1998 Eur. Phys. J. B 2 501

    [17]

    Mila F 1998 Phys. Rev. Lett. 81 2356

    [18]

    Mambrini M, Trébosc J, Mila F 1999 Phys. Rev. B 59 13806

    [19]

    Totsuka K, Mikeska H J 2002 Phys. Rev. B 66 054435

    [20]

    Rojas O, Alcaraz F C 2003 Phys. Rev. B 67 174401

    [21]

    Rojas O, Rojas M, Ananikian N S, de Souza S M 2012 Phys. Rev. A 86 042330

    [22]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V V 2015 Solid State Commun. 224 15

    [23]

    Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York:Academic Press) p89

    [24]

    Hida K 1994 J. Phys. Soc. Jpn. 63 2359

    [25]

    Ohanyan V, Ananikian N S 2003 Phys. Lett. A 307 76

    [26]

    Strečka J, Hagiwara M, Jaščur M, Minami K 2004 Czech. J. Phys. 54 583

    [27]

    Strečka J, Jaščur M, Hagiwara M, Minami K, Narumi Y, Kindo K 2005 Phys. Rev. B 72 024459

    [28]

    Antonosyan D, Bellucci S, Ohanyan V 2009 Phys. Rev. B 79 014432

    [29]

    Ohanyan V 2010 Phys. Atom. Nucl. 73 494

    [30]

    Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [31]

    Wang X 2001 Phys. Rev. A 64 012313

    [32]

    Wang X 2001 Phys. Lett. A 281 101

    [33]

    Kamta G L, Starace A F 2002 Phys. Rev. Lett. 88 107901

    [34]

    Zhou L, Song H S, Guo Y Q, Li C 2003 Phys. Rev. A 68 024301

    [35]

    Gunlycke D, Kendon V M, Vedral V, Bose S 2001 Phys. Rev. A 64 042302

    [36]

    Terzis A F, Paspalakis E 2004 Phys. Lett. A 333 438

    [37]

    Canosa N, Rossignoli R 2004 Phys. Rev. A 69 052306

    [38]

    Xi X Q, Chen W X, Hao S R, Yue R H 2002 Phys. Lett. A 300 567

    [39]

    Sun Y, Chen Y, Chen H 2003 Phys. Rev. A 68 044301

    [40]

    Asoudeh M, Karimipour V 2005 Phys. Rev. A 71 022308

    [41]

    Cao M, Zhu S 2005 Phys. Rev. A 71 034311

    [42]

    Zhang G F, Li S S 2005 Phys. Rev. A 72 034302

    [43]

    Wu K D, Zhou B, Cao W Q 2007 Phys. Lett. A 362 381

    [44]

    Zhou B 2011 Int. J. Mod. Phys. B 25 2135

    [45]

    Chen S R, Xia Y J, Man Z X 2010 Chin. Phys. B 19 050304

    [46]

    Ren J Z, Shao X Q, Zhang S, Yeon K H 2010 Chin. Phys. B 19 100307

    [47]

    Lu P, Wang J S 2009 Acta Phys. Sin. 58 5955 (in Chinese)[卢鹏, 王顺金 2009 物理学报 58 5955]

    [48]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese)[张英丽, 周斌 2011 物理学报 60 120301]

    [49]

    Ananikian N S, Ananikyan L N, Chakhmakhchyan L A, Rojas O 2012 J. Phys.:Condens. Matter 24 256001

    [50]

    Torrico J, Rojas M, de Souza S M, Rojas O, Ananikian N S 2014 Europhys. Lett. 108 50007

    [51]

    Abgaryan V S, Ananikian N S, Ananikyan L N, Hovhannisyan V 2015 Solid State Commun. 203 5

    [52]

    Qiao J, Zhou B 2015 Chin. Phys. B 24 110306

    [53]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [54]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [55]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1580
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-17
  • 修回日期:  2017-09-22
  • 刊出日期:  2017-12-05

具有三角自旋环的伊辛-海森伯链的热纠缠

    基金项目: 

    国家自然科学基金(批准号:11274102)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0960)和高等学校博士学科点专项科研基金(批准号:20134208110001)资助的课题.

摘要: 研究了具有三角自旋环的伊辛-海森伯链在磁场作用下的热纠缠性质.分别讨论了三角自旋环中自旋1/2粒子间相互作用的三种情形,即XXX,XXZ和XYZ海森伯模型.利用转移矩阵方法,数值计算了具有三角自旋环的伊辛-海森伯链的配对纠缠度.计算结果表明,外加磁场强度和温度对系统处于上述三种海森伯模型的热纠缠性质均有重要影响.给出了系统在不同的海森伯模型下,纠缠消失对应的临界温度随磁场强度的变化图,由此可以得到系统存在配对纠缠的参数区域,同时发现在特定的参数区域存在纠缠恢复现象.因此适当调节温度和磁场强度,可以有效调控具有三角自旋环的伊辛-海森伯链热纠缠性质.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回