搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高光束质量、高功率稳定性激光器的设计及实验研究

安然 范小贞 卢建新 文侨

高光束质量、高功率稳定性激光器的设计及实验研究

安然, 范小贞, 卢建新, 文侨
PDF
导出引用
导出核心图
  • 高光束质量、高功率稳定性激光器在激光加工、激光测量等领域具有广泛的用途.为了实现激光器腔内光斑聚焦同时减少色散和体积,人们常常将曲面反射镜用在激光谐振腔中,但光束倾斜入射到曲面反射镜往往会引起像散,从而导致光斑质量恶化,并降低激光器的性能.另一方面,在高功率激光器或超短脉冲激光器中,激光增益介质热透镜焦距的起伏,是导致激光输出功率波动的主要原因之一.针对激光器的像散和功率波动这两个问题,本文提出了一套简单高效的解决方案,在考虑像散补偿和热透镜效应的基础上,基于传播变换圆理论,首次提出一种可实现高光束质量、高功率稳定性激光器谐振腔的设计方法,并对采用该方法所设计出的超短脉冲激光器进行理论与实验研究.研究结果表明,利用该方法设计的激光谐振腔,两端臂像散能够完全被补偿,实验上实现了基模高斯光束输出;当激光晶体热透镜焦距改变时,该方法所设计出的激光谐振腔内各关键位置光斑半径的变化,显著地小于普通谐振腔,在相同外界条件下,其输出激光功率稳定性明显优于普通激光器.
      通信作者: 文侨, wenqiao@szu.edu.cn
    • 基金项目: 国家重大科研仪器设备研制专项(批准号:2012YQ200182)、深圳市协同创新科技计划-深港创新圈联合研发项目(批准号:SGLH20150205162842428)和深圳市基础研究项目(批准号:JCYJ20170302153540973,JCYJ20170412111625378)资助的课题.
    [1]

    Wu D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun H B 2009 Lab. Chip. 9 2391

    [2]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [3]

    Wen Q, Sun L Q, Zhang E Y, Tian Q 2009 Mod. Phys. Lett. B 23 2585

    [4]

    Wen Q, Sun L Q, Tian Q, Zhang E Y 2010 J. Opt. 12 015207

    [5]

    Zhang X Y, Zhao S Z, Wang Q P, Zhang Q D, Ozygus B, Weber H 2000 Chin. J. Laser 27 777 (in Chinese) [张行愚, 赵圣之, 王青圃, 张其第, Ozygus B, Weber H 2000 中国激光 27 777]

    [6]

    Wang Q Y 2011 M.S. Dissertation (Xi'an: Xidian University) (in Chinese) [王起阳 2011 硕士学位论文(西安: 西安电子科技大学)]

    [7]

    Skettrup T, Meelby T, Faerch K, Frederiksen S L, Pedersen C 2000 Appl. Opt. 39 24

    [8]

    Skettrup T 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [9]

    Wen Q, Liang G W, Zhang X J, Liang Z S, Wang Y G, Li J, Niu H B 2014 IEEE Photon. J. 6 15022136

    [10]

    Kogelnik H, Ippen E P, Dienes A, Shank C V 1972 IEEE J. Quantum Electron. 8 373

    [11]

    Kane D 1989 Opt. Commun. 71 113

    [12]

    Jamasbi N, Diels J C, Sarger L 1988 J. Mod. Opt. 35 1891

    [13]

    Zhang X J, Yang F, Wang Y G, Sun L Q, Wen Q, Niu H B 2013 Acta Phys. Sin. 62 024211 (in Chinese) [张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨 2013 物理学报 62 024211]

    [14]

    Yefet S, Jouravsky V, Pe’er A 2013 J. Opt. Soc. Am. B 30 549

    [15]

    Wen Q, Zhang X J, Wang Y G, Sun L Q, Niu H B 2014 Opt. Express 22 2309

    [16]

    Narro R, Arronte M, Posada E D, Ponce L, Rodríguez E 2009 Proc. SPIE. 7499

    [17]

    Zhang G Y 1977 Laser J. 4 44 (in Chinese) [张光寅 1977 激光 4 44]

    [18]

    Zhang G Y 1981 Laser J. 8 11 (in Chinese) [张光寅 1981 激光 8 11]

    [19]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [20]

    Liu J J, Ding S H, Ding Z, Jia H X 2015 Ele-Optic Technol. Appl. 30 25 (in Chinese) [刘佳佳, 丁双红, 丁泽, 贾海旭 2015 光电技术应用 30 25]

  • [1]

    Wu D, Chen Q D, Niu L G, Wang J N, Wang J, Wang R, Xia H, Sun H B 2009 Lab. Chip. 9 2391

    [2]

    Xia H, Wang J, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B 2010 Adv. Mater. 22 3204

    [3]

    Wen Q, Sun L Q, Zhang E Y, Tian Q 2009 Mod. Phys. Lett. B 23 2585

    [4]

    Wen Q, Sun L Q, Tian Q, Zhang E Y 2010 J. Opt. 12 015207

    [5]

    Zhang X Y, Zhao S Z, Wang Q P, Zhang Q D, Ozygus B, Weber H 2000 Chin. J. Laser 27 777 (in Chinese) [张行愚, 赵圣之, 王青圃, 张其第, Ozygus B, Weber H 2000 中国激光 27 777]

    [6]

    Wang Q Y 2011 M.S. Dissertation (Xi'an: Xidian University) (in Chinese) [王起阳 2011 硕士学位论文(西安: 西安电子科技大学)]

    [7]

    Skettrup T, Meelby T, Faerch K, Frederiksen S L, Pedersen C 2000 Appl. Opt. 39 24

    [8]

    Skettrup T 2005 J. Opt. A: Pure Appl. Opt. 7 645

    [9]

    Wen Q, Liang G W, Zhang X J, Liang Z S, Wang Y G, Li J, Niu H B 2014 IEEE Photon. J. 6 15022136

    [10]

    Kogelnik H, Ippen E P, Dienes A, Shank C V 1972 IEEE J. Quantum Electron. 8 373

    [11]

    Kane D 1989 Opt. Commun. 71 113

    [12]

    Jamasbi N, Diels J C, Sarger L 1988 J. Mod. Opt. 35 1891

    [13]

    Zhang X J, Yang F, Wang Y G, Sun L Q, Wen Q, Niu H B 2013 Acta Phys. Sin. 62 024211 (in Chinese) [张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨 2013 物理学报 62 024211]

    [14]

    Yefet S, Jouravsky V, Pe’er A 2013 J. Opt. Soc. Am. B 30 549

    [15]

    Wen Q, Zhang X J, Wang Y G, Sun L Q, Niu H B 2014 Opt. Express 22 2309

    [16]

    Narro R, Arronte M, Posada E D, Ponce L, Rodríguez E 2009 Proc. SPIE. 7499

    [17]

    Zhang G Y 1977 Laser J. 4 44 (in Chinese) [张光寅 1977 激光 4 44]

    [18]

    Zhang G Y 1981 Laser J. 8 11 (in Chinese) [张光寅 1981 激光 8 11]

    [19]

    Geng A C, Zhao C, Bo Y, Lu Y F, Xu Z Y 2008 Acta Phys. Sin. 57 6987 (in Chinese) [耿爱丛, 赵慈, 薄勇, 鲁远甫, 许祖彦 2008 物理学报 57 6987]

    [20]

    Liu J J, Ding S H, Ding Z, Jia H X 2015 Ele-Optic Technol. Appl. 30 25 (in Chinese) [刘佳佳, 丁双红, 丁泽, 贾海旭 2015 光电技术应用 30 25]

  • [1] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 物理学报, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [2] 樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮. 用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器. 物理学报, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [3] 方进勇, 江伟华, 黄惠军, 张治强, 黄文华. 基于圆柱谐振腔的高功率微波脉冲压缩系统. 物理学报, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [4] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [5] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [6] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [7] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究. 物理学报, 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [8] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [9] 连富强, 樊仲维, 白振岙, 刘一州, 林蔚然, 张晓雷, 赵天卓. 高稳定性、高质量脉冲压缩飞秒光纤激光系统研究. 物理学报, 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [10] 冯镇业, 陈志恬, 李先枢, 高燕球. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算. 物理学报, 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [11] 崔立红, 赵维宁, 颜昌翔. 高斯光束与谐振腔基模模式光路谐振匹配的分析与校准. 物理学报, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [12] 楼祺洪, 董景星, 周 军, 魏运荣, 苏宙平. 改善高功率激光二极管阵列光束质量的一种新方法. 物理学报, 2007, 56(10): 5831-5834. doi: 10.7498/aps.56.5831
    [13] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [14] 李世忱, 倪文俊, 于建. 多透镜谐振腔光束参数不变性研究. 物理学报, 1989, 38(12): 2049-2053. doi: 10.7498/aps.38.2049
    [15] 吴京生, 周玉美. 高β等离子体的离子-离子束不稳定性. 物理学报, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [16] 石秉仁. 高比压环流器等离子体位形的稳定性. 物理学报, 1982, 31(10): 1308-1316. doi: 10.7498/aps.31.1308
    [17] 王德真, 郭世宠, 蔡诗东. 高β等离子体中低混杂漂移不稳定性. 物理学报, 1990, 39(6): 67-74. doi: 10.7498/aps.39.67
    [18] 夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜. 近红外波段CO高灵敏检测的稳定性研究. 物理学报, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [19] 宁永强, 晏长岭, 秦 莉, 刘 云, 王立军, 曹健林, 李惠青, 张 杰, 崔大复, 许祖彦. 高功率垂直腔面发射半导体激光器优化设计研究. 物理学报, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [20] 刘建邦. 共焦不稳定光学谐振腔的解析解. 物理学报, 1980, 29(9): 1231-1236. doi: 10.7498/aps.29.1231
  • 引用本文:
    Citation:
计量
  • 文章访问数:  654
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-04-05

高光束质量、高功率稳定性激光器的设计及实验研究

  • 1. 深圳大学光电工程学院, 光电子器件与系统(教育部、广东省) 重点实验室, 深圳 518060
  • 通信作者: 文侨, wenqiao@szu.edu.cn
    基金项目: 

    国家重大科研仪器设备研制专项(批准号:2012YQ200182)、深圳市协同创新科技计划-深港创新圈联合研发项目(批准号:SGLH20150205162842428)和深圳市基础研究项目(批准号:JCYJ20170302153540973,JCYJ20170412111625378)资助的课题.

摘要: 高光束质量、高功率稳定性激光器在激光加工、激光测量等领域具有广泛的用途.为了实现激光器腔内光斑聚焦同时减少色散和体积,人们常常将曲面反射镜用在激光谐振腔中,但光束倾斜入射到曲面反射镜往往会引起像散,从而导致光斑质量恶化,并降低激光器的性能.另一方面,在高功率激光器或超短脉冲激光器中,激光增益介质热透镜焦距的起伏,是导致激光输出功率波动的主要原因之一.针对激光器的像散和功率波动这两个问题,本文提出了一套简单高效的解决方案,在考虑像散补偿和热透镜效应的基础上,基于传播变换圆理论,首次提出一种可实现高光束质量、高功率稳定性激光器谐振腔的设计方法,并对采用该方法所设计出的超短脉冲激光器进行理论与实验研究.研究结果表明,利用该方法设计的激光谐振腔,两端臂像散能够完全被补偿,实验上实现了基模高斯光束输出;当激光晶体热透镜焦距改变时,该方法所设计出的激光谐振腔内各关键位置光斑半径的变化,显著地小于普通谐振腔,在相同外界条件下,其输出激光功率稳定性明显优于普通激光器.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回