搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双腔光力学系统中输出光场纠缠特性的研究

张秀龙 鲍倩倩 杨明珠 田雪松

双腔光力学系统中输出光场纠缠特性的研究

张秀龙, 鲍倩倩, 杨明珠, 田雪松
PDF
导出引用
导出核心图
  • 腔光力学系统中的光辐射压力可以使系统中的各个子系统之间产生量子纠缠,最近在腔光力学系统中的量子纠缠引起了人们广泛的关注.本文研究了双腔光力系统中关于输出光场之间纠缠的性质,发现:此系统中力学振子的弛豫速率和滤波器带宽以及非相等耦合对输出光场之间纠缠的大小有着非常显著的影响,特别是在相等耦合条件下,输出光场中心频率与光腔本征频率近共振时,滤波器带宽对输出光场纠缠有着显著的抑制作用;但是如果采用非相等耦合,则可以有效抵制滤波器带宽对纠缠的抑制作用,使输出光场纠缠得到大幅提高.研究结果可应用在光力耦合系统中实现量子态转换、量子隐形传态等量子信息处理过程.
      通信作者: 鲍倩倩, baoqianqian@lnu.edu.cn
    • 基金项目: 黑龙江省自然科学基金(批准号:QC2017062)、辽宁省教育厅一般项目(批准号:L2014002)和辽宁大学青年科研基金(批准号:LDQN201430,LDGY201403)资助的课题.
    [1]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [2]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503

    [3]

    Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J, Wellstood F C 2003 Science 300 1548

    [4]

    Neeley M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland A N, Martinis J M 2010 Nature 467 570

    [5]

    DiCarlo L, Reed M, Sun L, Johnson B L, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [6]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [7]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [8]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese)[陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211]

    [9]

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205 (in Chinese)[陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205]

    [10]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese)[严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201]

    [11]

    Bhattacharya M, Giscard P L, Meystre P 2008 Phys. Rev. A 77 030303

    [12]

    Chen R X, Shen L T, Yang Z B, Wu H Z, Zheng S B 2014 Phys. Rev. A 89 023843

    [13]

    Liao J Q, Wu Q Q, Nori F 2014 Phys. Rev. A 89 014302

    [14]

    Yang C J, An J H, Yang W, Li Y 2015 Phys. Rev. A 92 062311

    [15]

    Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J, Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401

    [16]

    Wipf C, Corbitt T, Chen Y, Mavalvala N 2008 New J. Phys. 10 095017

    [17]

    Genes C, Mari A, Tombesi P, Vitali D 2008 Phys. Rev. A 78 032316

    [18]

    Barzanjeh Sh, Vitali D, Tombesi P, Milburn G J 2011 Phys. Rev. A 84 042342

    [19]

    Barzanjeh Sh, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [20]

    Barzanjeh Sh, Pirandola S, Weedbrook C 2013 Phys. Rev. A 88 042331

    [21]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [22]

    Tian L 2013 Phys. Rev. Lett. 110 233602

    [23]

    Kuzyk M C, van Enk S J, Wang H 2013 Phys. Rev. A 88 062341

    [24]

    Wang Y D, Chesi S Clerk A A 2015 Phys. Rev. A 91 013807

    [25]

    Deng Z J, Habraken S J M, Marquardt F 2016 New J. Phys. 18 063022

    [26]

    Deng Z J, Yan X B, Wang Y D, Wu C W 2016 Phys. Rev. A 93 033842

    [27]

    Vitali D, Gigan S, Ferreira A, Bhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405

    [28]

    Hofer S G, Wieczorek W, Aspelmeyer M, Hammerer K 2011 Phys. Rev. A 84 052327

    [29]

    Akram U, Munro W, Nemoto K, Milburn G J 2012 Phys. Rev. A 86 042306

    [30]

    Sinha K, Lin S Y, Hu B L 2015 Phys. Rev. A 92 023852

    [31]

    He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332

    [32]

    Kiesewetter S, He Q Y, Drummond P D, Reid M D 2014 Phys. Rev. A 90 043805

    [33]

    He Q Y, Reid M D 2013 Phys. Rev. A 88 052121

    [34]

    Wang M, Gong Q H, Ficek Z, He Q Y 2015 Sci. Rep. 5 12346

    [35]

    Wang M, Gong Q H, Ficek Z, He Q Y 2014 Phys. Rev. A 90 023801

    [36]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710

    [37]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [38]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [39]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503

  • [1]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400

    [2]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503

    [3]

    Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J, Wellstood F C 2003 Science 300 1548

    [4]

    Neeley M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland A N, Martinis J M 2010 Nature 467 570

    [5]

    DiCarlo L, Reed M, Sun L, Johnson B L, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [6]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [7]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [8]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese)[陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211]

    [9]

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205 (in Chinese)[陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205]

    [10]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese)[严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201]

    [11]

    Bhattacharya M, Giscard P L, Meystre P 2008 Phys. Rev. A 77 030303

    [12]

    Chen R X, Shen L T, Yang Z B, Wu H Z, Zheng S B 2014 Phys. Rev. A 89 023843

    [13]

    Liao J Q, Wu Q Q, Nori F 2014 Phys. Rev. A 89 014302

    [14]

    Yang C J, An J H, Yang W, Li Y 2015 Phys. Rev. A 92 062311

    [15]

    Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J, Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401

    [16]

    Wipf C, Corbitt T, Chen Y, Mavalvala N 2008 New J. Phys. 10 095017

    [17]

    Genes C, Mari A, Tombesi P, Vitali D 2008 Phys. Rev. A 78 032316

    [18]

    Barzanjeh Sh, Vitali D, Tombesi P, Milburn G J 2011 Phys. Rev. A 84 042342

    [19]

    Barzanjeh Sh, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [20]

    Barzanjeh Sh, Pirandola S, Weedbrook C 2013 Phys. Rev. A 88 042331

    [21]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [22]

    Tian L 2013 Phys. Rev. Lett. 110 233602

    [23]

    Kuzyk M C, van Enk S J, Wang H 2013 Phys. Rev. A 88 062341

    [24]

    Wang Y D, Chesi S Clerk A A 2015 Phys. Rev. A 91 013807

    [25]

    Deng Z J, Habraken S J M, Marquardt F 2016 New J. Phys. 18 063022

    [26]

    Deng Z J, Yan X B, Wang Y D, Wu C W 2016 Phys. Rev. A 93 033842

    [27]

    Vitali D, Gigan S, Ferreira A, Bhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405

    [28]

    Hofer S G, Wieczorek W, Aspelmeyer M, Hammerer K 2011 Phys. Rev. A 84 052327

    [29]

    Akram U, Munro W, Nemoto K, Milburn G J 2012 Phys. Rev. A 86 042306

    [30]

    Sinha K, Lin S Y, Hu B L 2015 Phys. Rev. A 92 023852

    [31]

    He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332

    [32]

    Kiesewetter S, He Q Y, Drummond P D, Reid M D 2014 Phys. Rev. A 90 043805

    [33]

    He Q Y, Reid M D 2013 Phys. Rev. A 88 052121

    [34]

    Wang M, Gong Q H, Ficek Z, He Q Y 2015 Sci. Rep. 5 12346

    [35]

    Wang M, Gong Q H, Ficek Z, He Q Y 2014 Phys. Rev. A 90 023801

    [36]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710

    [37]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [38]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [39]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503

  • [1] 石海泉, 谢智强, 徐勋卫, 刘念华. 多模光力系统中的非传统声子阻塞. 物理学报, 2018, 67(4): 044203. doi: 10.7498/aps.67.20171599
    [2] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量. 物理学报, 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [3] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [4] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [5] 杨志勇, 安毓英, 王菊霞. 多模光场与二能级原子相互作用的纠缠交换与保持. 物理学报, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [6] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控. 物理学报, 2019, 68(5): 054201. doi: 10.7498/aps.68.20181424
    [7] 罗均文, 吴德伟, 苗强, 魏天丽. 腔光力系统制备微波非经典态研究进展. 物理学报, 2020, 69(5): 054203. doi: 10.7498/aps.69.20191735
    [8] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] 肖佳, 徐大海, 伊珍, 谷文举. 三机械薄膜腔光力系统相互作用的研究. 物理学报, 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [10] 李森, 李浩珍, 许静平, 朱成杰, 羊亚平. 基于腔光力学系统的全光三极管的压缩特性. 物理学报, 2019, 68(17): 174202. doi: 10.7498/aps.68.20190078
    [11] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态. 物理学报, 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [12] 熊恒娜, 江 健, 陈 俊, 唐丽艳, 郭 红. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [13] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [14] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [15] 曹卓良, 宋 军. 两纠缠原子与二项式光场相互作用的动力学. 物理学报, 2005, 54(2): 696-702. doi: 10.7498/aps.54.696
    [16] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [17] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [18] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [19] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191745
    [20] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
  • 引用本文:
    Citation:
计量
  • 文章访问数:  440
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-03-22
  • 刊出日期:  2018-05-20

双腔光力学系统中输出光场纠缠特性的研究

  • 1. 东北石油大学 电子科学学院, 大庆 163318;
  • 2. 辽宁大学 物理学院, 沈阳 110036;
  • 3. 黑龙江科技大学 理学院, 哈尔滨 150001
  • 通信作者: 鲍倩倩, baoqianqian@lnu.edu.cn
    基金项目: 

    黑龙江省自然科学基金(批准号:QC2017062)、辽宁省教育厅一般项目(批准号:L2014002)和辽宁大学青年科研基金(批准号:LDQN201430,LDGY201403)资助的课题.

摘要: 腔光力学系统中的光辐射压力可以使系统中的各个子系统之间产生量子纠缠,最近在腔光力学系统中的量子纠缠引起了人们广泛的关注.本文研究了双腔光力系统中关于输出光场之间纠缠的性质,发现:此系统中力学振子的弛豫速率和滤波器带宽以及非相等耦合对输出光场之间纠缠的大小有着非常显著的影响,特别是在相等耦合条件下,输出光场中心频率与光腔本征频率近共振时,滤波器带宽对输出光场纠缠有着显著的抑制作用;但是如果采用非相等耦合,则可以有效抵制滤波器带宽对纠缠的抑制作用,使输出光场纠缠得到大幅提高.研究结果可应用在光力耦合系统中实现量子态转换、量子隐形传态等量子信息处理过程.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回