搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

122型铁基超导线带材实用化研究进展

徐光显 黄河 张现平 黄尚宇 马衍伟

122型铁基超导线带材实用化研究进展

徐光显, 黄河, 张现平, 黄尚宇, 马衍伟
PDF
导出引用
  • 在种类众多的新型铁基超导材料中,122型铁基超导体具有高转变温度、超高上临界场、低各向异性、高临界电流密度等优点,因此成为高场应用领域最具竞争力的铁基超导材料.目前122型铁基超导线带材在4.2 K,10 T下的传输临界电流密度已经超过105A/cm2这一实用化门槛值,表现出十分广阔的应用前景.本文回顾了新型铁基超导体的发现及发展历程,结合122型铁基超导体的自身特点,就如何制备高性能122型铁基超导线带材展开讨论,同时对粉末装管法制备流程中影响线带材性能的几大关键因素进行了详细分析.重点介绍了近年来122型铁基超导线带材的实用化研究进展,包括高强度线带材的制备、圆线的研制、多芯线材及长线的制备、超导接头的研究、力学性能及各向异性的研究等.对122型铁基超导线带材实用化研究进行了总结,并对其未来的发展趋势进行了展望.
      通信作者: 马衍伟, ywma@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51320105015,51602307,51677179)和北京市科技计划(批准号:Z171100002017006)资助的课题.
    [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1633
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-08-02
  • 刊出日期:  2019-10-20

122型铁基超导线带材实用化研究进展

  • 1. 中国科学院电工研究所, 应用超导重点实验室, 北京 100190;
  • 2. 武汉理工大学材料科学与工程学院, 武汉 430070;
  • 3. 中国科学院大学, 北京 100049
  • 通信作者: 马衍伟, ywma@mail.iee.ac.cn
    基金项目: 

    国家自然科学基金(批准号:51320105015,51602307,51677179)和北京市科技计划(批准号:Z171100002017006)资助的课题.

摘要: 在种类众多的新型铁基超导材料中,122型铁基超导体具有高转变温度、超高上临界场、低各向异性、高临界电流密度等优点,因此成为高场应用领域最具竞争力的铁基超导材料.目前122型铁基超导线带材在4.2 K,10 T下的传输临界电流密度已经超过105A/cm2这一实用化门槛值,表现出十分广阔的应用前景.本文回顾了新型铁基超导体的发现及发展历程,结合122型铁基超导体的自身特点,就如何制备高性能122型铁基超导线带材展开讨论,同时对粉末装管法制备流程中影响线带材性能的几大关键因素进行了详细分析.重点介绍了近年来122型铁基超导线带材的实用化研究进展,包括高强度线带材的制备、圆线的研制、多芯线材及长线的制备、超导接头的研究、力学性能及各向异性的研究等.对122型铁基超导线带材实用化研究进行了总结,并对其未来的发展趋势进行了展望.

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回