搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

112型铁基化合物EuFeAs2的单晶生长与表征

于佳 刘通 赵康 潘伯津 穆青隔 阮彬彬 任治安

112型铁基化合物EuFeAs2的单晶生长与表征

于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安
PDF
导出引用
导出核心图
  • 铁基超导体中含有一类特殊的112型结构化合物,其层状结构中含有一层锯齿形的As链构型.本文报道了用CsCl助熔剂法生长新型铁基112型EuFeAs2母体单晶的具体方法,以及对该单晶的结构和物性的详细表征.通过能量色散X射线能谱扫描对单晶样品进行的化学成分分析,以及单晶X射线衍射的结构解析,确定该单晶样品属于EuFeAs2相,结构精修得到EuFeAs2具有空间群为Imm2(No.44)的正交晶体结构,晶格常数分别是a=21.285(9),b=3.9082(10),c=3.9752(9).通过低温电阻测量,发现在110 K附近和46 K附近存在两个异常电阻跳变.进一步分析表明,110 K附近存在两个邻近的相变,这两个相变与铁基母体材料中常见的结构相变和Fe2+的反铁磁相变相符合.结合磁化率测量分析,可知46 K附近的相变属于Eu2+的反铁磁相变.
      通信作者: 任治安, renzhian@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300301)、国家自然科学基金(批准号:11474339,11774402)和中国科学院青年创新促进会优秀会员基金资助的课题.
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 EPL 85 17006

    [4]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [5]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Mater. 7 953

    [6]

    Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H, Shimoyama J 2014 J. Am. Chem. Soc. 136 846

    [7]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508

    [8]

    Li M Y, Liu Z T, Zhou W, Yang H F, Shen D W, Li W, Jiang J, Niu X H, Xie B P, Sun Y, Fan C C, Yao Q, Liu J S, Shi Z X, Xie X M 2015 Phys. Rev. B 91 045112

    [9]

    Rutzinger D, Bartsch C, Doerr M, Rosner H, Neu V, Doert T, Ruck M 2010 J. Solid State Chem. 183 510

    [10]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1019

    [11]

    Yu J, Liu T, Pan B J, Ruan B B, Wang X C, Mu Q G, Zhao K, Chen G F, Ren Z A 2017 Sci. Bull. 62 218

    [12]

    Yakita H, Ogino H, Sala A, Okada T, Yamamoto A, Kishio K, Iyo A, Eisaki H, Shimoyama J 2015 Physica C 518 14

    [13]

    Sun L, Guo J, Chen G, Chen X, Dong X, Lu W, Zhang C, Jiang Z, Zou Y, Zhang S, Huang Y, Wu Q, Dai X, Li Y, Liu J, Zhao Z 2010 Phys. Rev. B 82 134509

    [14]

    Matsubayashi K, Munakata K, Isobe M, Katayama N, Ohgushi K, Ueda Y, Kawamura N, Mizumaki M, Ishimatsu N, Hedo M, Umehara I, Uwatoko Y 2011 Phys. Rev. B 84 024502

    [15]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522

    [16]

    Koo J, Park J, Kook Cho S, Duk Kim K, Park S Y, Hee Jeong Y, Jun Park Y, Yeong Koo T, Hong K P, Lee C H, Kim J Y, Cho B K, Bong Lee K, Kim H J 2010 J. Phys. Soc. Jpn. 79 114708

    [17]

    Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G, Xu Z A 2008 Phys. Rev. B 78 052501

    [18]

    Feng C, Ren Z, Xu S, Jiang S, Xu Z A, Cao G, Nowik I, Felner I, Matsubayashi K, Uwatoko Y 2010 Phys. Rev. B 82 094426

    [19]

    Ballinger J, Wenger L E, Vohra Y K, Sefat A S 2012 J. Appl. Phys. 111 07E106

    [20]

    Sengupta K, Alzamora M, Fontes M B, Sampathkumaran E V, Ramos S M, Hering E N, Saitovitch E M B, Paulose P L, Ranganathan R, Doert T, Jemetio J P F 2012 J. Phys. Condens. Matter 24 096004

    [21]

    Guguchia Z, Bosma S, Weyeneth S, Shengelaya A, Puzniak R, Bukowski Z, Karpinski J, Keller H 2011 Phys. Rev. B 84 144506

    [22]

    Xiao Y, Su Y, Meven M, Mittal R, Kumar C M N, Chatterji T, Price S, Persson J, Kumar N, Dhar S K, Thamizhavel A, Brueckel T 2009 Phys. Rev. B 80 174424

    [23]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R, Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 EPL 85 17006

    [4]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [5]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Mater. 7 953

    [6]

    Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H, Shimoyama J 2014 J. Am. Chem. Soc. 136 846

    [7]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508

    [8]

    Li M Y, Liu Z T, Zhou W, Yang H F, Shen D W, Li W, Jiang J, Niu X H, Xie B P, Sun Y, Fan C C, Yao Q, Liu J S, Shi Z X, Xie X M 2015 Phys. Rev. B 91 045112

    [9]

    Rutzinger D, Bartsch C, Doerr M, Rosner H, Neu V, Doert T, Ruck M 2010 J. Solid State Chem. 183 510

    [10]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1019

    [11]

    Yu J, Liu T, Pan B J, Ruan B B, Wang X C, Mu Q G, Zhao K, Chen G F, Ren Z A 2017 Sci. Bull. 62 218

    [12]

    Yakita H, Ogino H, Sala A, Okada T, Yamamoto A, Kishio K, Iyo A, Eisaki H, Shimoyama J 2015 Physica C 518 14

    [13]

    Sun L, Guo J, Chen G, Chen X, Dong X, Lu W, Zhang C, Jiang Z, Zou Y, Zhang S, Huang Y, Wu Q, Dai X, Li Y, Liu J, Zhao Z 2010 Phys. Rev. B 82 134509

    [14]

    Matsubayashi K, Munakata K, Isobe M, Katayama N, Ohgushi K, Ueda Y, Kawamura N, Mizumaki M, Ishimatsu N, Hedo M, Umehara I, Uwatoko Y 2011 Phys. Rev. B 84 024502

    [15]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522

    [16]

    Koo J, Park J, Kook Cho S, Duk Kim K, Park S Y, Hee Jeong Y, Jun Park Y, Yeong Koo T, Hong K P, Lee C H, Kim J Y, Cho B K, Bong Lee K, Kim H J 2010 J. Phys. Soc. Jpn. 79 114708

    [17]

    Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G, Xu Z A 2008 Phys. Rev. B 78 052501

    [18]

    Feng C, Ren Z, Xu S, Jiang S, Xu Z A, Cao G, Nowik I, Felner I, Matsubayashi K, Uwatoko Y 2010 Phys. Rev. B 82 094426

    [19]

    Ballinger J, Wenger L E, Vohra Y K, Sefat A S 2012 J. Appl. Phys. 111 07E106

    [20]

    Sengupta K, Alzamora M, Fontes M B, Sampathkumaran E V, Ramos S M, Hering E N, Saitovitch E M B, Paulose P L, Ranganathan R, Doert T, Jemetio J P F 2012 J. Phys. Condens. Matter 24 096004

    [21]

    Guguchia Z, Bosma S, Weyeneth S, Shengelaya A, Puzniak R, Bukowski Z, Karpinski J, Keller H 2011 Phys. Rev. B 84 144506

    [22]

    Xiao Y, Su Y, Meven M, Mittal R, Kumar C M N, Chatterji T, Price S, Persson J, Kumar N, Dhar S K, Thamizhavel A, Brueckel T 2009 Phys. Rev. B 80 174424

    [23]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R, Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

  • [1] 胡林华, 戴松元, 王孔嘉. 溶胶-凝胶法制备的纳米TiO2结构相变及晶体生长动力学. 物理学报, 2003, 52(9): 2135-2139. doi: 10.7498/aps.52.2135
    [2] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [3] 孔令刚, 康晋锋, 王 漪, 刘力锋, 刘晓彦, 张 兴, 韩汝琦. CoxTi1-xO2-δ体材中氢退火引起的铁磁性及结构相变. 物理学报, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [4] 顾建军, 孙会元, 刘力虎, 岂云开, 徐芹. 结构相变对Fe掺杂TiO2薄膜室温铁磁性的影响. 物理学报, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [5] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [6] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [7] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [8] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [9] 赵祥永, 陈超, 罗豪甦, 李晓兵, 汪尧进, 王飞飞. 由BaTiO3晶体结构相变时的介电特性研究其电场作用下的偶极子偏转路径. 物理学报, 2009, 58(6): 4225-4229. doi: 10.7498/aps.58.4225
    [10] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [11] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [12] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [13] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [14] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [15] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [16] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [17] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [18] 孙小伟. 氟化镁高压萤石结构稳定性及热物性的数值模拟研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200289
    [19] 刘丽华, 邓冬梅, 陈镇平, 张金仓, 董成. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
    [20] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究. 物理学报, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
  • 引用本文:
    Citation:
计量
  • 文章访问数:  443
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2018-08-10
  • 刊出日期:  2018-10-20

112型铁基化合物EuFeAs2的单晶生长与表征

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 中国科学院大学物理科学学院, 北京 100049;
  • 3. 量子物质科学协同创新中心, 北京 100190
  • 通信作者: 任治安, renzhian@iphy.ac.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2016YFA0300301)、国家自然科学基金(批准号:11474339,11774402)和中国科学院青年创新促进会优秀会员基金资助的课题.

摘要: 铁基超导体中含有一类特殊的112型结构化合物,其层状结构中含有一层锯齿形的As链构型.本文报道了用CsCl助熔剂法生长新型铁基112型EuFeAs2母体单晶的具体方法,以及对该单晶的结构和物性的详细表征.通过能量色散X射线能谱扫描对单晶样品进行的化学成分分析,以及单晶X射线衍射的结构解析,确定该单晶样品属于EuFeAs2相,结构精修得到EuFeAs2具有空间群为Imm2(No.44)的正交晶体结构,晶格常数分别是a=21.285(9),b=3.9082(10),c=3.9752(9).通过低温电阻测量,发现在110 K附近和46 K附近存在两个异常电阻跳变.进一步分析表明,110 K附近存在两个邻近的相变,这两个相变与铁基母体材料中常见的结构相变和Fe2+的反铁磁相变相符合.结合磁化率测量分析,可知46 K附近的相变属于Eu2+的反铁磁相变.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回