-
由于缺少可用的散裂中子源, 多年来我国在大气中子单粒子效应方面主要依靠模拟仿真和单能中子试验的方式开展研究. 随着中国散裂中子源(CSNS)通过国家验收, 基于CSNS开展大气中子单粒子效应研究成为可能. 本文利用CSNS反角白光中子源开展多款静态随机存取存储器器件的中子单粒子效应试验, 并与早期开展的高原大气试验结果进行对比, 对CSNS在大气中子单粒子效应研究中的应用进行评估. 结果表明, 相同器件在CSNS反角白光中子源测得的单粒子翻转截面小于大气试验的结果, 且不同器件的翻转截面与特征尺寸没有明显的单调关系. 分析得到前者由于CSNS反角白光中子谱偏软; 后者由于特征尺寸降低导致的临界电荷变小和灵敏体积变小对截面的贡献是竞争关系. 针对截面偏小的问题, 根据能谱差异分析了中子能量阈值对器件翻转截面的影响, 发现能量阈值取12 MeV进行计算时, 器件在CSNS反角白光中子源和高原大气中子环境中能够得到较一致的截面. 研究结果表明CSNS反角白光中子源能够用于加速大气中子单粒子效应试验. 考虑到CSNS的运行功率正在逐步提高, 且多条规划中的白光中子束线与大气中子能谱更为接近, 预期未来CSNS将能更好地应用于大气中子单粒子效应研究.Due to the lack of available spallation neutron source, the atmospheric neutron single event effect (SEE) in China were studied mainly by means of simulation and single energy neutron test. Since the Chinese spallation neutron source (CSNS) passed the national acceptance, it has become possible to carry out the research on atmospheric neutron SEE by using the CSNS. In this paper, the neutron SEE experiments of 3 kinds of SRAMs with different feature sizes are carried out for the first time by using the CSNS back-n. The application of CSNS back-n in the study of atmospheric neutron SEE is evaluated by comparing with the results of the earlier plateau experiment. The results show that the cross section of the single event upset is smaller than that of the plateau test, and the cross sections of different devices have no obvious monotonic relationship with feature size. The reason for the former result is that the energy spectrum of CSNS back-n is slightly softer than that of the atmospheric neutron. The reason for the second result is that small feature size means small critical charge and small sensitive volume, and these two factors compete with each other when they make the contribution to the cross section. According to the difference in energy spectrum and cross section among the SRAM devices, a correction factor is proposed to correct the test results based on CSNS back-n. For the difference in energy spectrum, different energy thresholds will produce different ratios between the cross sections by using CSNS back-n and atmospheric neutron. The neutrons of CSNS back-n are mainly concentrated around 1 MeV, which is close to the energy threshold of general SRAM devices. Thus, inaccurate energy threshold estimation will introduce a large error into the cross section of SEU. Thus, the relation between the correction factor and the energy threshold is analyzed. If 12 MeV is selected as the energy threshold to calculate the cross section, more consistent results could be obtained for our DUT in CSNS back-n and atmospheric neutron environment. In a word, the results show that the CSNS back-n can be used to speed up the atmospheric neutron SEE test, but the result should be corrected to evaluate the threat from atmospheric neutron. Fortunately, with the continuous increase of CSNS operating power, the neutron flux and the accelerated factor of CSNS will increase synchronously. Besides, other 3 white light neutron beams are planned in the CSNS project, the planned energy spectra are closer to those of atmospheric neutron. It is expected that the CSNS will be better applied to the study of atmospheric neutron SEE.
-
Keywords:
- atmospheric neutron /
- single event effect /
- Chinese spallation neutron source /
- CSNS back-n
[1] Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar
[2] Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar
[3] Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar
[4] Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar
[5] Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547
[6] Dyer C, Hands A, Ryden K, Lei F 2018 IEEE Trans. Nucl. Sci. 65 432Google Scholar
[7] Taber A, Normand E 1993 IEEE Trans. Nucl. Sci. 40 120Google Scholar
[8] Olsen J, Becher P E, Fynbo P B, Raaby P, Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74Google Scholar
[9] Normand E, Baker T J 1993 IEEE Trans. Nucl. Sci. 40 1484Google Scholar
[10] Normand E 2001 IEEE Trans. Nucl. Sci. 48 1996Google Scholar
[11] Flament O, Baggio J, D’hose C, Gasiot G, Leray J L 2004 IEEE Trans. Nucl. Sci. 51 2908Google Scholar
[12] Lambert D, Baggio J, Hubert G 2006 IEEE Trans. Nucl. Sci. 53 1890Google Scholar
[13] Hands A, Morris P, Dyer C, Ryden K, Truscott P 2011 IEEE Trans. Nucl. Sci. 58 952Google Scholar
[14] Autran J L, Roche P, Borel J, Sudre C, Karine C, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar
[15] 中村刚史, 马场守, 伊部英治 著 (陈伟, 石绍柱, 宋朝晖, 王晨辉 译) 2015 大气中子在先进存储器件中引起的软错误 (北京: 国防工业出版社) 第94—119页
Takashi N, Mamoru B, Eishi I (translated by Chen W, Shi S Z, Song Z H, Wang C H ) 2015 Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices (Beijing: National Defense Industry Press) pp 94−119 (in Chinese)
[16] Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar
[17] Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268
[18] 张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 010201
Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 010201
[19] 綦蕾, 周燕佩 2018 航空科学技术 29 07
Qi L, Zhou Y P 2018 Aero. Sci. Tech. 29 07
[20] 王群勇, 刘燕芳, 陈宇, 白桦, 阳辉 2011 航空科学技术 4 34Google Scholar
Wang Q Y, Liu Y F, Chen Y, Bai H, Yang H 2011 Aero. Sci. Tech. 4 34Google Scholar
[21] 薛海红, 王群勇, 陈冬梅, 陈宇, 阳辉, 李红军 2015 北京航空航天大学学报 41 1894
Xue H H, Wang Q Y, Chen D M, Chen Y, Yang H, Li H J 2015 J. Beijing. Univ. Aero. Astron. 41 1894
[22] 周啸 2018 信息通信 4 79Google Scholar
Zhou X 2018 Infor. Comm. 4 79Google Scholar
[23] 张欢, 王思广, 陈伟, 杨善潮 2015 核技术 38 120501
Zhang H, Wang S G, Chen W, Yang S C 2015 Nucl. Tech. 38 120501
[24] 郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2010 原子能科学技术 44 362
Guo X Q, Guo H X, Wang G Z, Lin D S, Chen W, Bai X Y, Yang S C, Liu Y 2010 Atom. Ener. Sci. Tech. 44 362
[25] 于全芝, 胡志良, 殷雯, 梁天骄 2014 中国科学: 物理学 力学 天文学 44 479
Yu Q Z, Hu Z L, Yin W, Liang T J 2014 Sci. Sin.: Phys. Mech. Astron. 44 479
[26] 陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67
Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aero. Sci. Tech. 29 67
[27] 范辉, 郭刚, 沈东军, 刘建成, 陈红涛, 赵芳, 陈泉, 何安林, 史淑廷, 惠宁, 蔡莉, 王贵良 2015 原子能科学技术 49 171Google Scholar
Fan H, Guo G, Shen D J, Liu J C, Chen H T, Zhao F, Chen Q, He A L, Shi S T, Hui N, Cai L, Wang G L 2015 Atom. Ener. Sci. Tech. 49 171Google Scholar
[28] Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar
[29] Jedec 2001 JESD89-measurement and Reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices
[30] IEC 2006 Process management for avionics-atmospheric radiation effects, part 1: Accommodation of atmospheric radiation effects via single event effects within avionic electronic equip-ment: IEC 62396-1
[31] 郭晓强 2009 硕士学位论文(西安: 西北核技术研究所)
Guo X Q 2009 M.S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[32] 杨善超, 齐超, 白晓燕, 李瑞斌, 王晨辉, 李俊霖, 金晓明, 刘岩 2018 第三届全国辐射物理学术交流会 第77页
Yang S C, Qi C, Bai X Y, Li R B, Wang C H, Li J L, Jin X M, Liu Y 2018 The 3th Chinese Conferance on Radiation Physics p77 (in Chinese)
-
表 1 大气中子单粒子效应试验中子源
Table 1. Neutron sources for atmospheric neutron SEE experiment.
中子源 中子谱 优点 缺点 相关文献报道 国外 国内 航空高度环境 完全相同 无误差环境 成本高 √ × 地面大气环境 谱形状相同 无误差环境 注量率低耗时长 √ × 散裂中子源 谱形状相似能量范围不同 能谱范围大注量率高 模拟源少 √ × 单能中子源 单能 模拟源多成本低 需要多个能量点 √ √ 表 2 待测SRAM器件参数
Table 2. Parameters of the SRAM devices for test.
型号 制造商 容量/bits 特征尺寸/${\text{μ}}{\rm m}$ 工作电压/V HM62V8100 RENESAS 8 M (1 M × 8 bit) 0.18 3 HM628512B HITACHI 4 M (512 K × 8 bit) 0.35 5 HM628512A HITACHI 4 M (512 K × 8 bit) 0.50 5 表 3 在CSNS反角白光中子源的SEU测试结果
Table 3. Test result of the SEUs in CSNS back-n.
型号 测试图形 总容量/bit 总注量/n·cm–2 有效注量占比/% 翻转数(#) 翻转截面/cm2·bit–1 置信水平/% HM62V8100 0x00H 24M 2.90 × 109 45.73 343 1.02 × 10–14 94.6 0x55H 24M 2.89 × 109 45.73 367 1.10 × 10–14 94.8 0xAAH 24M 2.89 × 109 45.73 387 1.16 × 10–14 94.9 0xFFH 24M 2.93 × 109 45.73 342 1.01 × 10–14 94.6 HM628512B 0x00H 12M 3.12 × 109 45.73 207 1.15 × 10–14 93.0 0x55H 8M 3.84 × 109 45.73 197 1.34 × 10–14 92.9 0xAAH 12M 4.90 × 109 45.73 303 1.07 × 10–14 94.3 0xFFH 12M 1.78 × 109 45.73 114 1.11 × 10–14 90.6 HM628512A 0x00H 12M 3.03 × 109 45.73 176 1.01 × 10–14 92.5 0x55H 12M 3.94 × 109 45.73 262 1.16 × 10–14 93.8 0xAAH 12M 2.94 × 109 45.73 215 1.27 × 10–14 93.2 0xFFH 12M 2.93 × 109 45.73 205 1.22 × 10–14 93.0 表 4 在羊八井测得的SEU翻转结果
Table 4. Test result of the SEU in Yangbajing.
型号 总容量/bit 测试时长/h 翻转数(#) 翻转率/#·bit–1·h–1 翻转截面/cm2·bit–1 置信水平/% HM62V8100 8M × 573 6085 195 6.67 × 10–12 5.21 × 10–14 98.6 HM628512B 4M × 1221 5198 181 6.80 × 10–12 5.31 × 10–14 98.3 HM628512A 4M × 635 5198 76 5.49 × 10–12 4.29 × 10–14 97.4 表 5 不同中子环境中中不同能区的中子占比
Table 5. Proportion of different energy bands in different neutron environments.
中子源 中子数占比/% 通量/cm2·s–1 (> 1 MeV) 1—10 MeV 10—100 MeV > 100 MeV JEDEC(地面) 35 35 30 5.56 × 10–3 IEC(12 km) 36.5 37.2 26.3 2.43 × 100 羊八井 35.6 32.1 32.3 3.56 × 10–2 CSNS-back-n @76 81.7 16.8 1.5 7.32 × 105 (20 kW) CSNS-TS1-41° @20 m 50 28 22 — CSNS-TS2-30° 44 28.5 27.5 — CSNS-TS2-15° 22.6 25 52.4 — 表 6 考虑不同能量阈值时有效注量占比及SRAM器件的翻转截面
Table 6. SEU cross section of SRAMs and percentage of effective neutrons considering different energy threshold.
型号 能量阈值/MeV 有效注量占比/% 翻转截面/cm2·bit–1 CSNS back-n 羊八井 CSNS back-n 羊八井 HM62V8100 0.6 59.23 51.13 8.50 × 10–15 4.70 × 10–14 HM628512B 2.5 26.61 38.02 2.30 × 10–14 6.43 × 10–14 HM628512A 6.0 13.48 32.16 3.94 × 10–14 6.15 × 10–14 表 7 能量阈值取10, 12和14 MeV时器件对应的修正因子
Table 7. Correction factor for the DUTs with different energy threshold.
型号 不同能量阈值取值时的修正因子 10 MeV 12 MeV 14 MeV HM62V8100 1.33 1.19 1.05 HM628512B 1.12 1.00 0.88 HM628512A 1.04 0.93 0.81 -
[1] Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar
[2] Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar
[3] Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar
[4] Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar
[5] Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547
[6] Dyer C, Hands A, Ryden K, Lei F 2018 IEEE Trans. Nucl. Sci. 65 432Google Scholar
[7] Taber A, Normand E 1993 IEEE Trans. Nucl. Sci. 40 120Google Scholar
[8] Olsen J, Becher P E, Fynbo P B, Raaby P, Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74Google Scholar
[9] Normand E, Baker T J 1993 IEEE Trans. Nucl. Sci. 40 1484Google Scholar
[10] Normand E 2001 IEEE Trans. Nucl. Sci. 48 1996Google Scholar
[11] Flament O, Baggio J, D’hose C, Gasiot G, Leray J L 2004 IEEE Trans. Nucl. Sci. 51 2908Google Scholar
[12] Lambert D, Baggio J, Hubert G 2006 IEEE Trans. Nucl. Sci. 53 1890Google Scholar
[13] Hands A, Morris P, Dyer C, Ryden K, Truscott P 2011 IEEE Trans. Nucl. Sci. 58 952Google Scholar
[14] Autran J L, Roche P, Borel J, Sudre C, Karine C, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar
[15] 中村刚史, 马场守, 伊部英治 著 (陈伟, 石绍柱, 宋朝晖, 王晨辉 译) 2015 大气中子在先进存储器件中引起的软错误 (北京: 国防工业出版社) 第94—119页
Takashi N, Mamoru B, Eishi I (translated by Chen W, Shi S Z, Song Z H, Wang C H ) 2015 Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices (Beijing: National Defense Industry Press) pp 94−119 (in Chinese)
[16] Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar
[17] Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268
[18] 张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 010201
Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 010201
[19] 綦蕾, 周燕佩 2018 航空科学技术 29 07
Qi L, Zhou Y P 2018 Aero. Sci. Tech. 29 07
[20] 王群勇, 刘燕芳, 陈宇, 白桦, 阳辉 2011 航空科学技术 4 34Google Scholar
Wang Q Y, Liu Y F, Chen Y, Bai H, Yang H 2011 Aero. Sci. Tech. 4 34Google Scholar
[21] 薛海红, 王群勇, 陈冬梅, 陈宇, 阳辉, 李红军 2015 北京航空航天大学学报 41 1894
Xue H H, Wang Q Y, Chen D M, Chen Y, Yang H, Li H J 2015 J. Beijing. Univ. Aero. Astron. 41 1894
[22] 周啸 2018 信息通信 4 79Google Scholar
Zhou X 2018 Infor. Comm. 4 79Google Scholar
[23] 张欢, 王思广, 陈伟, 杨善潮 2015 核技术 38 120501
Zhang H, Wang S G, Chen W, Yang S C 2015 Nucl. Tech. 38 120501
[24] 郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2010 原子能科学技术 44 362
Guo X Q, Guo H X, Wang G Z, Lin D S, Chen W, Bai X Y, Yang S C, Liu Y 2010 Atom. Ener. Sci. Tech. 44 362
[25] 于全芝, 胡志良, 殷雯, 梁天骄 2014 中国科学: 物理学 力学 天文学 44 479
Yu Q Z, Hu Z L, Yin W, Liang T J 2014 Sci. Sin.: Phys. Mech. Astron. 44 479
[26] 陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67
Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aero. Sci. Tech. 29 67
[27] 范辉, 郭刚, 沈东军, 刘建成, 陈红涛, 赵芳, 陈泉, 何安林, 史淑廷, 惠宁, 蔡莉, 王贵良 2015 原子能科学技术 49 171Google Scholar
Fan H, Guo G, Shen D J, Liu J C, Chen H T, Zhao F, Chen Q, He A L, Shi S T, Hui N, Cai L, Wang G L 2015 Atom. Ener. Sci. Tech. 49 171Google Scholar
[28] Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar
[29] Jedec 2001 JESD89-measurement and Reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices
[30] IEC 2006 Process management for avionics-atmospheric radiation effects, part 1: Accommodation of atmospheric radiation effects via single event effects within avionic electronic equip-ment: IEC 62396-1
[31] 郭晓强 2009 硕士学位论文(西安: 西北核技术研究所)
Guo X Q 2009 M.S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)
[32] 杨善超, 齐超, 白晓燕, 李瑞斌, 王晨辉, 李俊霖, 金晓明, 刘岩 2018 第三届全国辐射物理学术交流会 第77页
Yang S C, Qi C, Bai X Y, Li R B, Wang C H, Li J L, Jin X M, Liu Y 2018 The 3th Chinese Conferance on Radiation Physics p77 (in Chinese)
计量
- 文章访问数: 11009
- PDF下载量: 133
- 被引次数: 0