-
电磁感应透明(electromagnetically induced transparency, EIT)本质上是原子与激光场相互作用引起的量子干涉效应, 理论上具有零吸收、强色散的典型特点[1,2], 因此被广泛应用于操控原子介质的光学特性[3]. 例如, 实现显著的光群速度减慢[4-6], 高效率的光信息可逆存储[7-9], 单光子脉冲的量子通信[10, 11], 全光电磁诱导的光栅[12], 光子晶体[13, 14], 光开关和光路由[15, 16]等, 这些研究应用在量子光学与量子信息领域具有非常重要的作用和价值.
以上研究和应用中所涉及的原子系综均为独立原子系综, 即忽略了原子之间的相互作用和耦合. 目前, 对EIT的研究应用已经拓展到强相互作用的超冷里德伯原子领域, 结合里德伯原子特性的EIT技术产生一批更为重要的应用. 例如: 实现光子相位门[17], 高分辨率的光谱探测[18], 单光子水平的光学操控[19, 20]和单光子元器件[21-25], 凸显出里德伯EIT技术在前沿光学研究与量子信息领域的重要性.
一方面, 里德伯原子间强烈的长程偶极-偶极相互作用会映射到EIT的光谱上, 产生依赖探测场强度与光子统计特征的合作光学非线性效应, 具体表现在探测场透射率和光子关联的光学响应上[26-32]. 另一方面, 在涉及里德伯原子的电磁感应光栅中观察到相位的集体合作非线性效应, 即探测场相位对入射场强和光子关联具有强烈的敏感性[33]. 但是在EIT研究中, 鲜有涉及此类非线性的相位研究. 特别地, 在量子光学和量子信息领域, 相位本身就扮演着非常重要的角色, 具有不可或缺的地位[3].
本文考虑最典型的里德伯电磁感应模型, 即在三能级梯形原子结构中考察强相干场作用下弱探测场在一维超冷原子介质中的稳态传播行为, 重点研究探测场相位的非线性光学响应特征. 通过与另外两种已知的合作光学非线性标识-探测场透射率和光子关联做对比研究, 发现探测场相位也具有明显的依赖入射场强和关联的非线性行为. 但是与其他两类标识明显不同, 最典型的是共振处观察不到相位的非线性特征, 而最显著的相位非线性特征却发生在经典光频率处. 探究相位的非线性特性, 对相互作用原子系统中EIT研究是个有力的补充, 推动单光子水平的量子操控研究以及新现象、新技术的开发.
文章结构如下: 第2节介绍系统模型, 进而给出描述系统演化的动力学方程; 第3节推导超级原子满足的条件极化率和探测场强度、二阶关联函数以及探测场相位满足的传播方程; 第4节进行数值结果分析与讨论; 最后为总结.
-
如图1所示, 本文研究强控制场相干作用下的弱量子探测场在一维冷原子系综中传播的透射光学响应.
$\left| g \right\rangle $ 为原子基态,$\left| e \right\rangle $ 为激发态,$\left| r \right\rangle $ 为高激发里德伯态. 控制场${\varOmega _{\rm{c}}}$ 相干驱动$\left| e \right\rangle \leftrightarrow \left| r \right\rangle $ 跃迁,${\varDelta _{\rm{c}}} = {\omega _{\rm{c}}} - {\omega _{re}}$ 为单光子失谐,${\omega _{\rm{c}}}$ 和${\omega _{re}}$ 分别为控制场频率和对应的能级跃迁频率. 量子探测场${\hat \varOmega _{\rm{p}}} = \eta {\hat \varepsilon _{\rm{p}}}$ 相干作用在$\left| g \right\rangle \leftrightarrow \left| e \right\rangle $ 跃迁上, 其中$\eta = {\wp _{ge}}\sqrt {{\omega _{\rm{p}}}/\left( {2\hbar {\varepsilon _0}V} \right)} $ 为耦合强度,${\hat \varepsilon _{\rm{p}}}$ 为湮灭算符,${\wp _{ge}}$ 代表原子跃迁的电偶极矩,${\varepsilon _0}$ 为真空介电常数.${\varDelta _{\rm{p}}} = {\omega _{\rm{p}}} - {\omega _{eg}}$ 为单光子探测失谐, 其中${\omega _{\rm{p}}}$ 和${\omega _{ eg}}$ 分别为探测场频率和对应的能级跃迁频率. 当两个相距为$R$ 的冷原子同时激发到里德伯态$\left| r \right\rangle $ 上, 它们之间的相互作用表示为van der Waals (vdW)势$V = \hbar {C_6}/{R^6}$ , 其中${C_6}$ 为vdW系数. 这样, 系统总的哈密顿写为图 1 (a)量子探测场
$\scriptstyle{\hat \varOmega _{\rm{p}}}$ 在控制场${\varOmega _{\rm{c}}}$ 相干作用下的一维冷原子系综中传播, 原子系综可以看作是由独立的超级原子构成的; (b)左侧为具有vdW 相互作用的三能级原子结构图; 右侧为等价的无相互作用超级原子能级结构图Figure 1. (a) Under the control of a classical field
$ {\varOmega _{\rm{c}}}$ , a quantum probe field$\scriptstyle{\hat \varOmega _{\rm{p}}}$ propagates in a one-dimensional cold atomic ensemble of non-interacting superatoms. (b) Left, level structure of the three-level interacting cold atoms described by a vdW potential; right, an equivalent energy level structure of a non-interacting superatom.$H = {H_{\rm a}} + {H_{\rm v}}, $ 前者为原子与激光光场之间的相互作用哈密顿:
$\begin{split} {H_{\rm a}} =\;& - \hbar \displaystyle\sum\limits_i^N {\left\{ {\left[ {{\varDelta _{\text{p}}}\hat \sigma _{ee}^{\left( i \right)} + \left( {{\varDelta _{\text{p}}} + {\varDelta _{\text{c}}}} \right)\hat \sigma _{rr}^{\left( i \right)}} \right]} \right.} \hfill \\ & \left. { + \left[ {{{\hat \varOmega }_{\text{p}}}\hat \sigma _{eg}^{\left( i \right)} + {\varOmega _{\text{c}}}\hat \sigma _{re}^{\left( i \right)} + h.c.} \right]} \right\}, \hfill \\ \end{split} $ 后者为原子间相互作用哈密顿:
${H_{\rm v}} = \hbar \sum\limits_{i < j}^N {\frac{{{C_6}}}{{R_{ij}^6}}\hat \sigma _{rr}^{\left( i \right)}\hat \sigma _{rr}^{\left( j \right)}} , $ 式中
${R_{ij}}$ 为第$i$ 个原子与第$j$ 个原子之间的距离;$N$ 为原子个数. 当$m = n$ 时$\hat \sigma _{mn}^{\left( i \right)} \equiv \left| m \right\rangle \left\langle n \right|$ ($m,n = $ $g,e,r $ )代表第$i$ 个原子的投影算符, 而$m \ne n$ 时则为原子跃迁算符.基于平均场近似, 原子跃迁部分可以用算符的平均值来描述:
$z$ 处小体积元$\Delta V$ 内所有原子跃迁算符$\hat \sigma _{mn}^{\left( i \right)}$ 的平均值为${\hat \sigma _{mn}}\left( z \right) = \displaystyle\sum\nolimits_i {\hat \sigma _{mn}^{\left( i \right)}} /\Delta V$ . 这样, 当量子探测场${\hat \varOmega _{\rm{p}}}$ (${\hat \varepsilon _{\rm{p}}}$ )在一维原子介质中传播, 描述系统空间分布和时间演化的海森伯-郎之万方程为:$\begin{array}{l}\begin{split} {\partial _t}{{\hat \varepsilon }_{\rm{p}}}\left( z \right) =\;& - c{\partial _z}{{\hat \varepsilon }_{\rm{p}}}\left( z \right) + {\rm i}\eta N{{\hat \sigma }_{ge}}\left( z \right),\\ {\partial _t}{{\hat \sigma }_{ge}}\left( z \right) = \;& - \left( {{\rm i}{\varDelta _{\rm{p}}} + {\gamma _e}} \right){{\hat \sigma }_{ge}}\left( z \right)\\ & - {\rm i}{\varOmega _{\rm{c}}}{{\hat \sigma }_{gr}}\left( z \right) - {\rm i}\hat \varOmega _{\rm{p}}^{\rm{ + }}\left( z \right),\\ {\partial _t}{{\hat \sigma }_{gr}}\left( z \right) \!=\;& \!-\! \big[ {{\rm i}\left( {{\varDelta _{\rm{p}}} \!+\! {\varDelta _{\rm{c}}}} \right) \!+\! {\rm i}\hat S\left( z \right) \!+\! {\gamma _r}} \big]{{\hat \sigma }_{gr}}\left( z \right) \\ &- {\rm i}\varOmega _{\rm{c}}^{\rm{*}}{{\hat \sigma }_{ge}}\left( z \right), \end{split}\end{array}$ 其中
${\gamma _e}$ 和${\gamma _r}$ 分别为对应能级的相干弛豫速率;$\hat S\left( z \right)$ 为vdW相互作用引起的能级移动, 在这里转化为$\left| g \right\rangle \leftrightarrow \left| r \right\rangle $ 跃迁的双光子失谐. 需要强调的是, (4)式中已经考虑了以下两个条件: 第一, 大多数原子在基态布居; 第二, 探测场为弱场. 因此在传播过程中有${\hat \sigma _{gg}}\left( z \right) \approx 1$ ,${\hat \sigma _{ee}}\left( z \right) \approx {\hat \sigma _{rr}}\left( z \right) \approx 0$ , 所以原本在(4)式中出现的跃迁算符平均值${\hat \sigma _{er}}\left( z \right)$ 自然也可以忽略不计.当原子被足够强的激光场相干照射, 由于偶极-偶极相互作用, 一定空间内出现不超过一个里德伯激发的现象称为偶极阻塞效应(dipole blockade effect). 对于如图1(b)所示的三能级梯形原子系统, 其偶极阻塞半径
${R_{\rm{b}}} \approx [{\gamma _e}{C_6}/\varOmega _{\rm{c}}^{\rm{2}}){]^{1/6}}$ . 利用严格的偶极阻塞效应可以定义超级原子: 由于阻塞体积内至多只有一个原子处于里德伯态, 所以大多数原子行为与二能级原子一致, 进而将阻塞区域内所有原子看作一个具有集体行为的大原子, 称这个大原子为超级原子. 这样做的好处是超级原子之间的相互作用可以忽略不计, 从而大大降低多体原子系统希尔伯特空间的维度, 简化计算和降低计算难度. 基于偶极阻塞效应和弱探测场条件, 用以下3个集体态: 超级原子基态$\left| {{G_n}} \right\rangle = {\left| g \right\rangle ^{ \otimes n}}$ 、超级原子激发态$\left| {{E_1}} \right\rangle = \displaystyle\sum\nolimits_j^{{n_{SA}}} {\left| {{g_1},{g_2},...,{e_j},...,{g_{{n_{{\rm{SA}}}}}}} \right\rangle } /\sqrt {{n_{{\rm{SA}}}}} $ 和超级原子里德伯态$\left| {{R_1}} \right\rangle = \displaystyle\sum\nolimits_j^{{n_{{\rm{SA}}}}} {\left| {{g_1},{g_2},...,{r_j},...} \right\rangle }$ ${g_{{n_{{\rm{SA}}}}}} /\sqrt {{n_{{\rm{SA}}}}}$ 足可以描述超级原子的能级结构(如图1(b)所示). 需要强调的是, 超级原子能级结构与超级原子形状无关, 只取决于原子间的有效跃迁. 在此基础上, 定义超级原子的跃迁算符${\hat \Sigma _{GE}} = \left| G \right\rangle \left\langle E \right|$ (${\hat \Sigma _{GR}} = \left| G \right\rangle \left\langle R \right|$ )和投影算符${\hat \Sigma _{RR}} =$ $ {\hat \Sigma _{RG}}{\hat \Sigma _{GR}} $ . 要获得超级原子满足的海森伯-郎之万方程, 只需将(4)式中的单原子算符${\hat \sigma _{ge}}$ 和${\hat \sigma _{gr}}$ 用对应的超级原子算符替代, 同时探测拉比频率算符${\hat \varepsilon _{\rm{p}}}$ 变为增强的$\sqrt {{n_{{\rm{SA}}}}} {\hat \varepsilon _{\rm{p}}}$ 即可. -
基于超级原子方法,
$\left\langle {\hat S(z)} \right\rangle \to \infty $ 意味着$z$ 处的超级原子处于里德伯态$\left| {{R_1}} \right\rangle $ , 这时$\left| {{R_1}} \right\rangle $ 与$\left| {{E_1}} \right\rangle $ 和$\left| {{G_n}} \right\rangle $ 均不耦合, 超级原子的行为与二能级原子类似; 而$\left\langle {\hat S(z)} \right\rangle \to 0$ 表示没有原子激发到里德伯态$\left| {{R_1}} \right\rangle $ 上, 这时超级原子行为等同于三能级梯形原子. 故此给出系统总的条件极化率:$\hat \alpha (z) = {\alpha _2}{\hat \Sigma _{RR}}(z) + {\alpha _3}[1 - {\hat \Sigma _{RR}}(z)], $ 其中二能级原子极化率:
${\alpha _2} = \frac{{ - {\rm{i}}{\gamma _e}}}{{{\rm{i}}{\varDelta _{\rm{p}}} + {\gamma _e}}},$ 和三能级原子极化率
${\alpha _3} = \frac{{ - {\rm{i}}{\gamma _e}}}{{{\rm{i}}{\varDelta _{\rm{p}}} + {\gamma _e} + \dfrac{{{{\left| {{\varOmega _{\rm{c}}}} \right|}^2}}}{{{\rm i}\left( {{\varDelta _{\rm{p}}} + {\varDelta _{\rm{c}}}} \right) + {\gamma _r}}}}}.$ 可以看出, 系统条件极化率
$\hat \alpha (z)$ 由超级里德伯原子布居来主导: 当${\hat \Sigma _{RR}}(z) = 1$ 时, 有$\left\langle {\hat \alpha (z)} \right\rangle = {\alpha _2}$ ; 而当${\hat \Sigma _{RR}}(z) = 0$ 时, 则为$\left\langle {\hat \alpha (z)} \right\rangle = {\alpha _3}$ . 当满足${\left| {{\varOmega _{\rm p}}} \right|^2} = {\left| \eta \right|^2}\left\langle {\hat \varepsilon _{\rm p}^ + (z){{\hat \varepsilon }_{\rm p}}(z)} \right\rangle \leqslant \gamma _e^2/9$ 时, 超级里德伯原子布居为${\hat \varSigma _{RR}}(z) = \frac{{{{\left| {{\varOmega _{\rm{c}}}} \right|}^2}{n_{{\rm{SA}}}}{{\left| \eta \right|}^2}\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){{\hat \varepsilon }_{\rm{p}}}(z)}}{{{{\left| {{\varOmega _{\rm{c}}}} \right|}^2}{n_{{\rm{SA}}}}{{\left| \eta \right|}^2}\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){{\hat \varepsilon }_{\rm{p}}}(z) + X}},$ 其中
$X = {\left[ {{{\left| {{\varOmega _{\rm{c}}}} \right|}^2} - {\varDelta _{\rm{p}}}\left( {{\varDelta _{\rm{p}}} + {\varDelta _{\rm{c}}}} \right)} \right]^2} + \gamma _e^2{\left( {{\varDelta _{\rm{p}}} + {\varDelta _{\rm{c}}}} \right)^2}$ .因为冷原子介质具有各向异性, 所以探测场的光学响应会随着位置发生变化, 稳态探测场强度
${I_{\rm{p}}}(z) = \left\langle {\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle $ 满足传播方程:${\partial _z}\left\langle {\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle = - \kappa (z)\left\langle {\hat \varepsilon _{\rm{p}}^ + (z)\operatorname{Im} [\hat \alpha (z)]{{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle ,$ 式中
$\kappa (z) = \rho (z){\omega _{\rm{p}}}\left| {{\wp _{ge}}^2} \right|/(\hbar {\varepsilon _0}c{\gamma _e})$ 代表共振吸收系数;$\rho (z)$ 为$z$ 处的原子密度.探测场在传播过程中, 其光子关联也会发生改变. 二阶关联函数
$g_{\rm{p}}^{(2)}(z) = \left\langle {\hat \varepsilon _{\rm{p}}^{{\rm{ + 2}}}(z)\hat \varepsilon _{\rm{p}}^{\rm{2}}(z)} \right\rangle /\left\langle {\hat \varepsilon _{\rm{p}}^ + (z)} \right.$ ${\left. {{{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle ^2}$ 满足传播方程:${\partial _z}g_{\rm{p}}^{{\rm{(2)}}}(z) = - \kappa (z)\left\langle {{{\hat \Sigma }_{RR}}(z)} \right\rangle \operatorname{Im} ({\alpha _2} - {\alpha _3})g_{\rm{p}}^{{\rm{(2)}}}(z),$ 在此基础上, 需要将(5), (8)式以及(9), (10)式中涉及探测场
$\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){\hat \varepsilon _{\rm{p}}}(z)$ 的部分全部换成既有强度又考虑关联的形式$\left\langle {\hat \varepsilon _{\rm{p}}^{\rm{ + }}(z){{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle g_{\rm{p}}^{(2)}(z)$ . 这样既能利用平均场理论简化多体问题的难度, 又能最大程度地考虑到探测场的量子关联属性.与独立原子系综不同, 探测场相位
${\phi _{\rm{p}}} = $ $ \arg\left\langle {{{\hat \varepsilon }_{\rm{p}}}(z)} \right\rangle$ 也受超级里德伯原子激发影响而具有条件性属性, 满足传播方程:${\partial _z}{\phi _{\rm{p}}}(z) = \kappa (z)\left\langle {\operatorname{Re} [\hat \alpha \left( z \right)]} \right\rangle /2.$ 联立探测场强度、二阶关联函数以及探测场相位满足的耦合方程组(5)—(11), 同时给定方程初值, 即
$z = 0$ 处探测场的${I_{\rm{p}}}(0)$ ,$g_{\rm{p}}^{{\rm{(2)}}}({\rm{0}})$ 和${\phi _{\rm{p}}}(0)$ , 利用统计手段来求解: 首先将长度为$L$ 的一维原子样品平均分成$L/(2{R_{{\rm{SA}}}})$ 片段, 这样做的目的是保证每一片段只包含一个超级原子, 在每一个超级原子中通过Monte-Carlo采样判断里德伯原子激发概率$\left\langle {{{\hat \Sigma }_{RR}}(z)} \right\rangle \to {\rm{1}}$ 还是$\left\langle {{{\hat \Sigma }_{RR}}(z)} \right\rangle \to {\rm{0}}$ 直到最后一个里德伯原子. 重复多次并取平均值, 能够获得量子探测场穿过冷原子样品的稳态透射率、二阶关联函数值以及探测场相位值. -
考虑实验验证的可行性, 这里采用实际的实验参数来进行数值计算, 然后进行理论分析与讨论. 在超冷87Rb原子中, 选取
$5{S_{1/2}}\left| {F = 2,{m_F} = 2} \right\rangle $ 、$5{P_{3/2}}\left| {F = 3,{m_F} = 3} \right\rangle $ 和$70{S_{1/2}}$ 分别对应于图1(b)中的基态$\left| g \right\rangle $ 、激发态$\left| e \right\rangle $ 和里德伯态$\left| r \right\rangle $ . 弛豫速率${\gamma _e} = 3.0\;{\rm{MHz}}$ 和${\gamma _r} = 0.02\;{\rm{MHz}}$ . 原子密度为$\rho (z) = $ $ 1.5 \times {10^7}\;{\rm{m}}{{\rm{m}}^{ - 3}}$ , 样品长度为$L = 1.5\;{\rm{mm}}$ , vdW系数${C_6}/(2{\text{π}}) = 8.8 \times {10^{11}}\;{{\rm{s}}^{ - 1}} \cdot {\text{μ}}{{\rm{m}}^6}$ , 其他具体参数见图下文字说明.首先扫描探测场来观察透射光谱. 图2(a)和(b)显示, 当入射探测场拉比频率
${\varOmega _{\rm{p}}}(0)$ 很弱时, 共振频率处透射率${I_{\rm{p}}}\left( L \right)/{I_{\rm{p}}}\left( 0 \right) \approx 1$ , 而Autler-Townes (AT)劈裂处, 即${\varDelta _{\rm{p}}} = \pm {\varOmega _{\rm{c}}}$ 有${I_{\rm{p}}}\left( L \right)/{I_{\rm{p}}}\left( 0 \right) \approx 0$ , 并且透射光一直为经典光$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( L \right) = 1$ , 表现为典型的线性EIT. 随着入射探测场拉比频率增大到${\varOmega _{\rm{p}}}(0)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ , 出现明显的合作光学非线性效应, 具体表现为: 共振频率处有明显的吸收现象, 透明窗口由透明转为部分透明, 对应的二阶关联函数也从经典光$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( L \right) = 1$ 变为反聚束光$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( L \right) < 1$ . 特别地, AT劈裂处则变为聚束光$g_{\rm{p}}^{\left( 2 \right)}\left( L \right) > 1$ . 进一步增大入射场强, 非线性效应更加明显, 说明在未饱和之前, 合作光学非线性效应是强烈依赖于入射探测场强度的. 从图2(c)可以看出, 与探测场透射率和二阶关联函数相比, 探测场相位也表现出明显依赖于入射场强的非线性特性, 但是又有明显差异, 体现出独特的非线性效应. 具体来说, 在共振频率和AT劈裂处, 前者相位${\phi _{\rm{p}}}\left( L \right) = 0$ 保持不变而后者不敏感. 介于二者之间的频率区域才显示出非线性效应, 特别突出的是在${\varDelta _{\rm{p}}} \approx 1.4\;{\rm{MHz}}$ (${\varDelta _{\rm{p}}} \approx - 1.4\;{\rm{MHz}}$ )出现极大值(极小值)并且表现出明显的入射场强敏感性: 随着入射场强的增加, 极大值变小而极小值变大. 需要强调的是,${\varDelta _{\rm{p}}} \approx \pm $ $1.4\;{\rm{MHz}} $ 对应于经典光$g_{\rm{p}}^{\left( 2 \right)} = 1$ . 与其他两种非线性标识一样, 相位的非线性特征也来源于条件极化率. 当探测场极弱的时候, 根本不存在里德伯激发, 表现为三能级透明结构的相位, 而当探测场足够强就转变为二能级吸收型原子相位特征.图 2 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 的函数. 黑色实线, 蓝色折线以及红色点线分别对应入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$ , 0.3 MHz和0.6 MHz的情况. 单光子失谐${\varDelta _{\rm{c}}} = 0$ , 控制场拉比频率${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$ , 其他参数见正文描述Figure 2. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) probe phase${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ . The black solid, blue dashed and red dotted curves are corresponding to incident probe Rabi frequencies${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$ ,$0.3\;{\rm{MHz}}$ and$0.6\;{\rm{MHz}}$ , respectively. The single-photon detuning${\varDelta _{\rm{c}}} = 0$ and the Rabi frequency of control field${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$ . Other parameters are described in the text.图3给出透射光谱的相空间结构, 用来重点考察探测场相位与其他两类非线性标识对频率和入射场强依赖的一致性. 为了尽量保证弱探测场的前提条件, 这里探测场拉比频率满足
${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) \in $ $ \left[ {0.01,0.75} \right]\;{\rm{ MHz}}$ . 很明显, 相位分布关于共振点所在的对称轴呈现完美的反对称特征. 除了共振频率${\varDelta _{\rm{p}}}/(2{\text{π}}) = 0$ , AT劈裂(${\varDelta _{\rm{p}}} = \pm {\varOmega _{\rm{c}}}$ )直至大失谐($\left| {{\varDelta _{\rm{p}}}} \right|/$ $(2{\text{π}}) > > 3\;{\rm{MHz}} $ )以外, 都可以看出相位明显依赖于探测场强度, 特别是在${\varDelta _{\rm{p}}} \approx \pm 1.4\;{\rm{MHz}}$ 频率处. 此时, 相位的极值始终对应于经典光$g_{\rm{p}}^{\left( 2 \right)} = 1$ , 增大探测场强度也不会改变. 原因在于条件极化率中不存在失谐对探测场强度的依赖关系, 这个从(5)—(8)式也很容易看出.图 3 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 和入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ 的函数. 其他参数同图2Figure 3. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) the probe phase${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ and theRabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ . Other parameters are the same as in Fig. 2.文献[30]表明, 合作光学非线性除了表现在对探测场强度的依赖以外, 还具有入射场量子属性(光子关联)的敏感性. 图4选取较强的入射场强, 在易于产生非线性光学效应的前提下给出透射区光谱对频率和入射光子关联依赖的相空间结构. 与图3类似, 相位也呈现反对称空间结构, 敏感区域发生在共振频率和AT劈裂之间. 在
${\varDelta _{\rm{p}}} \approx $ $ \pm 1.4\;{\rm{MHz}}$ 频率处出现极值, 当初始关联函数改变较小的时候, 相位变化不明显, 但是整体上仍然可以看出对入射光子关联的依赖性.图 4 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 和初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right)$ 的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ , 其他参数同图2Figure 4. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{{\rm{(2)}}}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) probe phase$ {\phi _{\rm{p}}}(L)/{\text{π}} $ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ and the initial second-order correlation function$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ . The Rabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and other parameters are the same as in Fig. 2.进一步把频率固定在
${\varDelta _{\rm{p}}} \approx \pm 1.4\;{\rm{MHz}}$ 处, 考察相位对入射探测场强度和初始光子关联的敏感性. 从前面的研究可知, 这个频率对应的是相位的极值, 当发生非线性效应时候, 相位的绝对值会变小, 图5也能显示出这个特点. 另外, 由图5还可以推测出: 相位的非线性效应会在探测场强度和初始光子关联较大的情况下达到饱和.图 5 探测场相位
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ 作为入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ 和初始二阶关联函数$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ 的函数 (a)探测失谐${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$ ; (b)探测失谐${\varDelta _{\rm{p}}} = $ $ - 1.4\;{\rm{MHz}}$ . 其他参数同图2Figure 5. Probe phase
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of the Rabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ and initial second-order correlation function$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ : (a) Probe detuning${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$ ; (b) probe detuning${\varDelta _{\rm{p}}} = $ $- 1.4\;{\rm{MHz}}$ . Other parameters are the same as in Fig. 2.最后检查主量子数和原子样品密度对相位的影响. 由文献[34]可知, vdW系数
${C_6} \approx {n^{11}}\left( {{c_0} + } \right.$ $ \left. {{c_1}n + {c_2}{n^2}} \right)$ ,$n$ 为主量子数,${c_0} = 11.97$ ,${c_1} =$ $ - 0.8486$ ,${c_2} = 0.003385$ . 从图6可以看出共振频率处相位一直保持为零, 不受主量子数和密度变化影响. 而${\varDelta _{\rm{p}}} \approx \pm 1.4\;{\rm{MHz}}$ 频率处的相位, 随着主量子数和原子密度的增加而被不断被压缩, 非线性效应明显. 原因就在于每个超级原子内包含的原子数增多了, 前者是原子密度不变阻塞半径增大引起的, 而后者阻塞半径不变, 仅是原子密度增大的结果.图 6 探测场相位
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ 作为(a)主量子数$n$ 和(b)原子密度$\rho $ 的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/$ $(2{\text{π}}) = 0.3\;{\rm{MHz}}$ , 初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$ . 其他参数同图2Figure 6. Probe phase
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of (a)the principal quantum number$n$ and (b) the atomic density$\rho $ . The incident probe intensity${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and the initial second-order correlation function$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$ . Other parameters are the same as in Fig. 2. -
本文讨论了一维三能级里德伯原子气体的透射光学响应, 重点研究EIT条件下的相位性质. 结果表明, 除了探测场透射率和光子关联以外, 探测场相位也具有典型的光学非线性效应, 成为合作光学非线性的另一个标识. 通过对比研究, 发现相位非线性的独特之处: 共振点和AT劈裂频率不存在非线性现象, 而对应经典光的失谐处, 非线性效应更强, 更为敏感. 最后改变主量子数和原子样品密度, 发现随着主量子数和原子样品密度的增大, 相位的非线性效应也增强.
-
本文在典型的里德伯电磁感应透明系统中研究弱探测场在相互作用原子系统中的传播特性, 重点关注基于偶极阻塞效应的探测场相位的合作光学非线性行为. 通过与探测场透射率和光子关联作对比, 发现相位的光学响应具有新特性: 共振和Autler-Townes劈裂条件下相位对入射场强和初始光子关联不敏感, 而在两者之间的频率范围内相位响应具有非线性特征, 尤其在经典光频率处最显著. 此外, 提高主量子数和原子密度都会促进相位的非线性效应. 综上, 与探测场透射率和光子关联一样, 相位可以作为合作光学非线性的另一个标识来刻画非线性现象, 对里德伯电磁感应透明研究是一个有力的补充.
-
图 1 (a)量子探测场
$\scriptstyle{\hat \varOmega _{\rm{p}}}$ 在控制场${\varOmega _{\rm{c}}}$ 相干作用下的一维冷原子系综中传播, 原子系综可以看作是由独立的超级原子构成的; (b)左侧为具有vdW 相互作用的三能级原子结构图; 右侧为等价的无相互作用超级原子能级结构图Fig. 1. (a) Under the control of a classical field
$ {\varOmega _{\rm{c}}}$ , a quantum probe field$\scriptstyle{\hat \varOmega _{\rm{p}}}$ propagates in a one-dimensional cold atomic ensemble of non-interacting superatoms. (b) Left, level structure of the three-level interacting cold atoms described by a vdW potential; right, an equivalent energy level structure of a non-interacting superatom.图 2 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 的函数. 黑色实线, 蓝色折线以及红色点线分别对应入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$ , 0.3 MHz和0.6 MHz的情况. 单光子失谐${\varDelta _{\rm{c}}} = 0$ , 控制场拉比频率${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$ , 其他参数见正文描述Fig. 2. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) probe phase${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ . The black solid, blue dashed and red dotted curves are corresponding to incident probe Rabi frequencies${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$ ,$0.3\;{\rm{MHz}}$ and$0.6\;{\rm{MHz}}$ , respectively. The single-photon detuning${\varDelta _{\rm{c}}} = 0$ and the Rabi frequency of control field${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$ . Other parameters are described in the text.图 3 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 和入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ 的函数. 其他参数同图2Fig. 3. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) the probe phase${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ and theRabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ . Other parameters are the same as in Fig. 2.图 4 (a)探测场透射率
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$ 作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$ 和初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right)$ 的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ , 其他参数同图2Fig. 4. (a) The transmitted probe intensity
${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$ , (b) the second-order correlation function$g_{\rm{p}}^{{\rm{(2)}}}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$ , (c) probe phase$ {\phi _{\rm{p}}}(L)/{\text{π}} $ as a function of the probe detuning${\varDelta _{\rm{p}}}/(2{\text{π}})$ and the initial second-order correlation function$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ . The Rabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and other parameters are the same as in Fig. 2.图 5 探测场相位
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ 作为入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ 和初始二阶关联函数$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ 的函数 (a)探测失谐${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$ ; (b)探测失谐${\varDelta _{\rm{p}}} = $ $ - 1.4\;{\rm{MHz}}$ . 其他参数同图2Fig. 5. Probe phase
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of the Rabi frequency of the incident probe field${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ and initial second-order correlation function$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$ : (a) Probe detuning${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$ ; (b) probe detuning${\varDelta _{\rm{p}}} = $ $- 1.4\;{\rm{MHz}}$ . Other parameters are the same as in Fig. 2.图 6 探测场相位
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ 作为(a)主量子数$n$ 和(b)原子密度$\rho $ 的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/$ $(2{\text{π}}) = 0.3\;{\rm{MHz}}$ , 初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$ . 其他参数同图2Fig. 6. Probe phase
${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of (a)the principal quantum number$n$ and (b) the atomic density$\rho $ . The incident probe intensity${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and the initial second-order correlation function$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$ . Other parameters are the same as in Fig. 2. -
引用本文: |
Citation: |
计量
- 文章访问数: 1355
- PDF下载量: 38
- 被引次数: 0