搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大模场一维高阶厄米-高斯激光束产生

周王哲 李雪鹏 杨晶 杨天利 王小军 刘炳杰 王浩竹 杨俊波 彭钦军

引用本文:
Citation:

大模场一维高阶厄米-高斯激光束产生

周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军

Generation of One-dimensional High-order Hermite-Gaussian Laser Beams with Large Mode Volume

Zhou Wang-Zhe, Li Xue-Peng, Yang Jing, Yang Tian-Li, Wang Xiao-Jun, Liu Bing-Jie, Wang Hao-Zhu, Yang Jun-Bo, Peng Qin-Jun
PDF
导出引用
  • 厄米-高斯光束在诸多前沿科学领域都有着重要的应用。不同于目前普遍采用的晶体端面离轴泵浦方式,本文提出了一种利用板条激光器产生厄米-高斯激光束的方法。我们采用半导体激光阵列大面正交泵浦板条激光介质,具有大模场特性。根据预先设计的谐振腔模场,在板条厚度和宽度方向分别采用尺寸可调的光阑限模。由于高阶模式对谐振腔腔镜不对准的灵敏度弱于低阶模式,可通过耦合输出镜倾斜量的控制,实现不同阶数模式腔内损耗的差异化调控,从而产生各阶次的高纯度厄米-高斯光束。利用Nd:YAG板条激光器,我们获得了0~9阶一维厄米-高斯光束,其光强分布与理论值的相关系数 ρ高于0.95,光束质量因子ρ也与理论值吻合良好。最高阶HG09模式的输出功率为 244 mW。在此基础上,进一步利用柱透镜对组成的像散模式转换器,实现了各阶厄米-高斯光束向对应拉盖尔-高斯光束的转换。结合板条放大器结构,基于本方案产生的厄米-高斯光束具备功率定标放大的前景。
    Hermite-Gaussian (HG) beams have many important applications in the optical frontier,and the limited output power of the high-purity HG beams is partly due to the small gain volume of the mode.The commonly used off-axis end-pumped scheme offers a narrow gain volume whose diameter is about a hundred microns.In this paper,a new method for generation of HG beams based on a slab resonator that has a large mode volume is proposed and experimentally demonstrated.According to the optical resonator theory,the intra-cavity modes in thickness and width direction of the slab resonator are restricted by inserting two size-adjustable apertures,respectively.The one-dimensional HG beam generation is mainly guaranteed by the size of the aperture along the thickness direction of the slab,which matches the diameter of the fundamental mode.The different order one-dimensional HG beams are obtained by refined intra-cavity mode modulation.Since the higher-order modes are less sensitive to the misalignment of the cavity mirror than the lower-order modes,the manipulation of the modes-loss at different orders is achieved by combining the tilt control of the coupled output mirror and the size control of intra-cavity apertures.Through the adjustment of the optical gain and loss in the resonator,the single mode wins out in the laser modes competition.Consequently,high-purity one-dimensional HG beams with orders 0 to 9(HG00 to HG09) are generated.The pump module is comprised of a two-dimensional laser diode array which offers face-pumping to the large surface of the slab,therefore the width of the mode volume is extended to several millimeters.By further incorporating the 100mm-level length slab,the total gain volume is much larger than the off-axis pumping scheme.In this paper,the output power of the highest order HG09 mode is up to 244 mW.Due to the large gain volume and uniform gain distribution brought by the face-pumped slab,the purity of high order HG modes is quite good.The correlation coefficient ρ between the measured intensity distribution and the theoretical value is larger than 0.95.The beam quality factor ρ is also in good agreement with the theory.Finally,a conversion from Hermite-Gaussian beams to the donut-shaped Laguerre-Gaussian beams is realized by using an astigmatic mode converter.Hopefully,power scaling of the HG beam output is also expected by employing cascaded slab amplifiers,and the approach in this paper provides a novel solution for generation of high power HG beams.
  • [1]

    Kogelnik H, Li T 1996 Appl. Opt. 5 1550

    [2]

    Sayan Ö F, Gerçekcioğlu H, Baykal Y 2020 Opt. Commun. 458 124735

    [3]

    Meyrath T P, Schreck F, Hanssen J L, Chuu C -S, Raizen M G 2005 Opt. Express 13 2843

    [4]

    Wadhwa J, Singh A 2019 Phys. Plasmas 26 062118

    [5]

    Ghotra H S, Jaroszynski D, Ersfeld B, Saini N S, Yoffe S, Kant N 2018 Laser Part. Beams 36 154

    [6]

    Beijersbergen M W, Allen L, van der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [7]

    Chu S -C, Ohtomo T, Otsuka K 2008 Appl. Opt. 47 2583

    [8]

    Ohtomo T, Chu S -C, Otsuka K 2008 Opt. Express 16 5082

    [9]

    Shen Y, Meng Y, Fu X, Gong M 2018 Opt. Lett. 43 291

    [10]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [11]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [12]

    Romero J, Leach J, Jack B, Dennis M R, Franke-Arnold S, Barnett S M, Padgett M J 2011 Phys. Rev. Lett. 106, 100407

    [13]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104, 231110

    [14]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144

    [15]

    Gu Y, Gbur G 2010 Opt. Commun 283 1209

    [16]

    Ohtomo T, Kamikariya K, Otsuka K, Chu S -C 2007 Opt. Express 15 10705

    [17]

    Chu S -C, Chen Y -T, Tsai K -F, Otsuka K 2012 Opt. Express 20 7128

    [18]

    Delaubert V, Shaddock D A, Lam P K, Buchler B C, Bachor H -A, McClelland D E 2002 J. Opt. A: Pure Appl. Opt. 4 393

    [19]

    Ma L, Guo H, Sun H, Liu K, Su B, Gao J 2020 Photonics Res. 8 1422

    [20]

    Hu A, Lei J, Chen P, Wang Y, Li S 2014 Appl. Opt. 53 7845

    [21]

    Li S, Guo Y -D, Chen Z -Z, Zhang L, Gong K -L, Zhang Z -F, Xu Z -Y 2019 Chin. Phys. Lett. 36 044204

    [22]

    Boyd G D, Gordon J P 1961 Bell Syst. Tech. J. 40 489

    [23]

    Carter W H 1980 Appl. Opt. 19 1027

    [24]

    Zhang L, Guo Y -D, Chen Z -Z, Gong K -L, Xu J -L, Yuan L, Lin Y -Y, Meng S, Li Y, Shao C -F, Li S, Zhang Z -F, Bo Y, Peng Q -J, Cui D -F, Xu Z -Y 2019 IEEE Photonics Technol. Lett. 31 405

    [25]

    McCumber D E 1965 Bell Syst. Tech. J. 44 333

    [26]

    Freiberg R J, Halsted A S 1969 Appl. Opt. 8 355

    [27]

    Benesty J, Chen J, Huang Y, Cohen I 2009 Noise reduction in speech processing (Berlin: Springer) p1-4.

    [28]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

  • [1] 周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军. 大模场一维高阶厄米-高斯激光束产生. 物理学报, doi: 10.7498/aps.72.20221422
    [2] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, doi: 10.7498/aps.69.20200086
    [3] 杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器. 物理学报, doi: 10.7498/aps.66.104209
    [4] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展. 物理学报, doi: 10.7498/aps.64.024210
    [5] 刘冬兵, 程晋明, 祁双喜, 王婉丽, 钱伟新. 部分空间相干和部分光谱相干厄米-高斯脉冲光束的焦场的相干特性. 物理学报, doi: 10.7498/aps.61.244202
    [6] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究. 物理学报, doi: 10.7498/aps.60.024214
    [7] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, doi: 10.7498/aps.59.1863
    [8] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, doi: 10.7498/aps.58.7727
    [9] 李玮, 陈建国, 冯国英, 黄宇, 李刚, 谢旭东, 杨火木, 周寿桓. 厄米-高斯光束的M2因子矩阵. 物理学报, doi: 10.7498/aps.58.2461
    [10] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, doi: 10.7498/aps.57.5684
    [11] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, doi: 10.7498/aps.57.5045
    [12] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, doi: 10.7498/aps.57.6921
    [13] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, doi: 10.7498/aps.57.6982
    [14] 季小玲, 汤明玥, 张 涛. 超短脉冲厄米-高斯光束在湍流大气中的光谱移动和光谱跃变. 物理学报, doi: 10.7498/aps.56.4281
    [15] 李建龙, 吕百达. 厄米-高斯光束通过正弦和矩形浮雕光栅传输特性的比较研究. 物理学报, doi: 10.7498/aps.56.5772
    [16] 康小平, 何 仲, 吕百达. 矢量非傍轴厄米-拉盖尔-高斯光束的光束质量. 物理学报, doi: 10.7498/aps.55.4569
    [17] 但有全, 张 彬. 复宗量厄米-高斯光束的相干模表示. 物理学报, doi: 10.7498/aps.55.712
    [18] 张霞萍, 郭 旗. 强非局域非线性介质中光束传输的厄米高斯解. 物理学报, doi: 10.7498/aps.54.3178
    [19] 彭润伍, 吕百达. 厄米-高斯光束的焦开关. 物理学报, doi: 10.7498/aps.52.2795
    [20] 焦文涛, 辛建国. 射频激励板条波导CO2激光器远场空间压窄单峰输出模式特性的实验研究. 物理学报, doi: 10.7498/aps.48.1875
计量
  • 文章访问数:  1723
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 上网日期:  2022-09-28

/

返回文章
返回