搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重频硬X射线自由电子激光脉冲到达时间诊断方法研究

张少军 郭智 成加皿 王勇 陈家华 刘志

引用本文:
Citation:

高重频硬X射线自由电子激光脉冲到达时间诊断方法研究

张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志

Arrival time diagnosis method of high refrequency hard X-ray free electron laser

Zhang Shao-Jun, Guo Zhi, Cheng Jia-Min, Wang Yong, Chen Jia-Hua, Liu Zhi
PDF
HTML
导出引用
  • X射线自由电子激光(XFEL)脉冲时间诊断技术常用于实验站附近XFEL脉冲和配套激光的相对到达时间探测, 是飞秒级XFEL泵浦探测实验的重要辅助技术, 为XFEL和激光泵浦探测实验中两种脉冲对准提供参考信号. 随着XFEL向高重频、短脉冲发展, 对时间诊断中的诊断频率、泵浦样品和分辨率提出了更高的要求. 该技术通过泵浦探测和光学互相关实现, 当XFEL脉冲入射高带宽半导体样品瞬间, 导致样品复折射率突变, 使XFEL到达时间编码于突变空间. 本文基于空间编码和光谱编码两种方法, 研发设计了XFEL单脉冲到达时间诊断装置; 并通过Beer’s吸收理论和原子散射理论对X射线与样品作用过程进行模拟, 研究了该过程中X射线吸收与折射率突变的响应程度, 完善了样品的分析选择模型; 对光谱编码中的啁啾脉冲调制进行分析, 得到色散介质和脉冲本征参数对诊断分辨率的影响. 该研究对XFEL脉冲到达时间诊断装置的应用具有指导意义.
    X-ray free electron laser (XFEL) pulse time diagnosis technology is often used to detect the relative arrival time of XFEL pulse and auxiliary laser near the experimental station. It is an important auxiliary technology and provides a reference signal for the pump-probe pulse in the XFEL laser pump-probe experiment. With the development of XFEL towards high repetition frequency and short pulse, higher requirements are put forward for diagnostic frequency, pump sample and resolution in time diagnosis. The technology is realized by the pump-probe method and optical cross-correlation method. When the XFEL pulse is incident on the high-bandwidth semiconductor solid target instantaneously, the complex refractive index of the solid target will change, then the arrival time of XFEL will be encoded in the mutation space. In thiswork, we design an XFEL pulse arrival time diagnostic device based on two methods: spatial coding and spectral coding. In this framework, the interaction between X-ray and solid target is explored by Beer's absorption theory and atomic scattering theory. Therefore, the response to X-ray absorption and refractive index in this process are investigated, and the solid target selection model is developed. This model is used to analyze the influence of solid target type and thickness in diagnosis, while avoiding situations where the sample is too hot due to a lot X-ray absorption. Moreover, the influence of hard X-ray on sample temperature at high frequency is considered, and the samples suitable for different X-ray bands are given. The chirped pulse modulation in spectral coding is analyzed, and the influence of dispersion medium and pulse parameters on the diagnostic resolution of spectral coding are obtained. Finally, the error effects of X-ray, spatial coding and spectral coding on the results are analyzed, and the analysis methods and consideration factors of the two coding methods are given. This work is of great significance in using the XFEL pulse arrival time diagnostic device.
      通信作者: 郭智, guoz@sari.ac.cn ; 刘志, liuzhi@shanghaitech.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3503904)和国家自然科学基金(批准号: 12075304)资助的课题.
      Corresponding author: Guo Zhi, guoz@sari.ac.cn ; Liu Zhi, liuzhi@shanghaitech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3503904) and the National Natural Science Foundation of China (Grant No. 12075304).
    [1]

    赵振堂, 冯超 2018 物理 47 481Google Scholar

    Zhao Z T, Feng C 2018 Physics 47 481Google Scholar

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 18Google Scholar

    [3]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [4]

    Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M 2013 Nat. Photonics 7 215Google Scholar

    [5]

    Schulz S, Grguras I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Predki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun 6 5938Google Scholar

    [6]

    Grychtol P, Rivas D E, Baumann T M, et al. 2021 Opt. Express 29 37429Google Scholar

    [7]

    Sato T, Letrun R, Kirkwood H J, et al. 2020 Optica 7 716Google Scholar

    [8]

    Nakajima K, Joti Y, Katayama T, Owada S, Togashi T, Abe T, Kameshima T, Okada K, Sugimoto T, Yamaga M, Hatsui T, Yabashi M 2018 J. Synchrotron Radiat. 25 592Google Scholar

    [9]

    Düsterer S, Rehders M, Al-Shemmary A, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 23545Google Scholar

    [10]

    Sanchez-Gonzalez A, Johnson A S, Fitzpatrick A, Hutchison C D M, Fare C, Cordon-Preciado V, Dorlhiac G, Ferreira J L, Morgan R M, Marangos J P, Owada S, Nakane T, Tanaka R, Tono K, Iwata S, van Thor J J 2017 J. Appl. Phys. 122 203105Google Scholar

    [11]

    Hartmann N, Helml W, Galler A, Bionta M R, Grünert J, L. Molodtsov S, Ferguson K R, Schorb S, Swiggers M L, Carron S, Bostedt C, Castagna J C, Bozek J, Glownia J M, Kane D J, Fry A R, White W E, Hauri C P, Feurer T, Coffee R N 2014 Nat. Photonics 8 706Google Scholar

    [12]

    Maltezopoulos T, Photonen D F M, Cunovic S, Wieland M, Drescher M 2008 New J. Phys. 10 1218Google Scholar

    [13]

    Schorb S, Gorkhover T, Cryan J P, Glownia J M, Bionta M R, Coffee R N, Erk B, Boll R, Schmidt C, Rolles D, Rudenko A, Rouzee A, Swiggers M, Carron S, Castagna J C, Bozek J D, Messerschmidt M, Schlotter W F, Bostedt C 2012 Appl. Phys. Lett. 100 121107Google Scholar

    [14]

    Beye M, Krupin O, Hays G, Reid A H, Rupp D, Jong S d, Lee S, Lee W S, Chuang Y D, Coffee R, Cryan J P, Glownia J M, Föhlisch A, Holmes M R, Fry A R, White W E, Bostedt C, Scherz A O, Durr H A, Schlotter W F 2012 Appl. Phys. Lett. 100 121108Google Scholar

    [15]

    Katayama T, Owada S, Togashi T, Ogawa K, Karvinen P, Vartiainen I, Eronen A, David C, Sato T, Nakajima K, Joti Y, Yumoto H, Ohashi H, Yabashi M 2016 Struct. Dynam. -US 3 034301Google Scholar

    [16]

    Droste S, Zohar S, Shen L, White V E, Diaz-Jacobo E, Coffee R N, Reid A H, Tavella F, Minitti M P, Turner J J, Robinson J S, Fry A R, Coslovich G 2020 Opt. Express 28 23545Google Scholar

    [17]

    Bionta M R, Lemke H T, Cryan J P, Glownia J M, Bostedt C, Cammarata M, Castagna J C, Ding Y, Fritz D M, Fry A R, Krzywinski J, Messerschmidt M, Schorb S, Swiggers M L, Coffee R N 2011 Opt. Express 19 21855Google Scholar

    [18]

    Kirkwood H J, Letrun R, Tanikawa T, et al. 2019 Opt. Lett. 44 1650Google Scholar

    [19]

    Diez M, Galler A, Schulz S, Boemer C, Coffee R N, Hartmann N, Heider R, Wagner M S, Helml W, Katayama T, Sato T, Sato T, Yabashi M, Bressler C 2021 Sci. Rep. 11 3562Google Scholar

    [20]

    Owada S, Nakajima K, Togashi T, Katayama T, Yumoto H, Ohashi H, Yabashi M 2019 J. Synchrotron Radiat. 26 887Google Scholar

    [21]

    Krupin O, Trigo M, Schlotter W F, et al. 2012 Opt. Express 20 11396Google Scholar

    [22]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation (New York: Cambridge) pp98–122

    [23]

    Teubner U, Wagner U, Forster E 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2993Google Scholar

    [24]

    Wang K, Qian L J, Luo H, Yuan P, Zhu H Y 2006 Opt. Express 14 6366Google Scholar

    [25]

    Wang J, Zhang Y, Shen H, Jiang Y, Wang Z 2017 Opt. Eng. 56 076107Google Scholar

  • 图 1  XFEL脉冲到达时间诊断系统光路示意图, 诊断系统位于XFEL束线末端, 实验线站之前. 其中红色光束为空间编码, 绿色光束为光谱编码光路, 插图为空间编码示意图

    Fig. 1.  Optical layout of PAM (XFEL pulse arrival time monitor), PAM is located before the experimental station, at the end of the XFEL beam line. Red optical layout is spatial coding, green optical layout is spectral coding, illustration is a spatial coding diagram.

    图 2  诊断设备机械设计和光学布局 (a) 诊断设备整体设计图; (b) 空间编码、光谱编码在腔体外的光路布局和腔体内部透视

    Fig. 2.  Mechanical design and optical layout: (a) Overall design drawing of diagnostic equipment; (b) optical layout design of spatial coding, spectral coding and chamber fluoroscopy.

    图 3  不同厚度样品下的X射线透射率 (a) Si3N4; (b) GaAs; (c) 金刚石膜

    Fig. 3.  Transmittance of X-ray in samples with different thicknesses: (a) Si3N4; (b) GaAs; (c) diamond film.

    图 4  泵浦样品的有限元热分析结果 (a) Si3N4; (b) 金刚石膜

    Fig. 4.  Finite element thermal analysis of the pumped sample: (a) Si3N4; (b) diamond film.

    图 5  (a) X射线泵浦后探测激光透过样品的透射变化率; (b) XFEL脉冲入射到GaAs, Si3N4和金刚石薄膜(diamond film)样品靶的透射率

    Fig. 5.  (a) The change rate of laser transmission through the sample is detected after X-ray pump; (b) transmittance of XFEL pulses incident on GaAs, Si3N4 and diamond film.

    图 6  带宽为 450—650 nm的超连续谱分别入射厚度为20, 25, 35和50 mm的色散玻璃时的脉宽调制 (a) SF11; (b) SF57

    Fig. 6.  Pulse width broadening of the probing laser with super-continuum bandwidth 450–650 nm, after transmitting the dispersive glass with thickness 20, 25, 35 and 50 mm: (a) SF11; (b) SF57

    图 7  500和600 nm中心波长下不同谱宽探测激光随脉冲长度展宽的分辨率极限

    Fig. 7.  Resolution limits of laser broadening with pulse length at 500 and 600 nm central wavelengths with different spectral widths.

    图 8  200 nm谱宽的啁啾连续谱通过SF11玻璃的非线性展宽导致相邻波长之间的非线性时间差

    Fig. 8.  Nonlinear time difference between adjacent wavelengths due to nonlinear broadening of SF11 glass is shown for the chirp continuum spectrum with 200 nm spectrum width.

    表 1  GaAs, Si3N4和金刚石膜三种半导体材料用于到达时间诊断的相关参数

    Table 1.  Parameters for GaAs, Si3N4 and diamond film semiconductor materials for arriving time diagnosis.

    种类规格带宽吸收长度*密度熔点导热系数
    mm2eVnmg/cm3W/(cm·K)
    Si3N41025360—44313.1918001.369
    GaAs1021.43321—21665.3112380.46
    Diamond1025.5367—37143.515355023
    * X射线波长范围0.4—2 nm
    下载: 导出CSV

    表 2  Si3N4, GaAs和金刚石膜中载流子的有效质量和弛豫时间

    Table 2.  Effective mass and relaxation time of carriers in GaAs, Si3N4 and diamond film.

    样品$ {m}_{{\rm{e}}}^{*} $$ {m}_{{\rm{h}}}^{*} $$ {\tau }_{\text{e}} $/ps$ {\tau }_{{\rm{h}}} $/ps
    Si3N40.3$ {m}_{{\rm{e}}}^{} $0.3$ {m}_{{\rm{e}}}^{} $0.50.5
    GaAs0.067$ {m}_{{\rm{e}}}^{} $0.4$ {m}_{{\rm{e}}}^{} $4.82
    Diamond0.28$ {m}_{{\rm{e}}}^{} $1.22$ {m}_{{\rm{e}}}^{} $1.51.4
    下载: 导出CSV
  • [1]

    赵振堂, 冯超 2018 物理 47 481Google Scholar

    Zhao Z T, Feng C 2018 Physics 47 481Google Scholar

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 18Google Scholar

    [3]

    Emma P, Akre R, Arthur J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [4]

    Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M 2013 Nat. Photonics 7 215Google Scholar

    [5]

    Schulz S, Grguras I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Predki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun 6 5938Google Scholar

    [6]

    Grychtol P, Rivas D E, Baumann T M, et al. 2021 Opt. Express 29 37429Google Scholar

    [7]

    Sato T, Letrun R, Kirkwood H J, et al. 2020 Optica 7 716Google Scholar

    [8]

    Nakajima K, Joti Y, Katayama T, Owada S, Togashi T, Abe T, Kameshima T, Okada K, Sugimoto T, Yamaga M, Hatsui T, Yabashi M 2018 J. Synchrotron Radiat. 25 592Google Scholar

    [9]

    Düsterer S, Rehders M, Al-Shemmary A, et al. 2014 Phys. Rev. Spec. Top. Accel. Beams 17 23545Google Scholar

    [10]

    Sanchez-Gonzalez A, Johnson A S, Fitzpatrick A, Hutchison C D M, Fare C, Cordon-Preciado V, Dorlhiac G, Ferreira J L, Morgan R M, Marangos J P, Owada S, Nakane T, Tanaka R, Tono K, Iwata S, van Thor J J 2017 J. Appl. Phys. 122 203105Google Scholar

    [11]

    Hartmann N, Helml W, Galler A, Bionta M R, Grünert J, L. Molodtsov S, Ferguson K R, Schorb S, Swiggers M L, Carron S, Bostedt C, Castagna J C, Bozek J, Glownia J M, Kane D J, Fry A R, White W E, Hauri C P, Feurer T, Coffee R N 2014 Nat. Photonics 8 706Google Scholar

    [12]

    Maltezopoulos T, Photonen D F M, Cunovic S, Wieland M, Drescher M 2008 New J. Phys. 10 1218Google Scholar

    [13]

    Schorb S, Gorkhover T, Cryan J P, Glownia J M, Bionta M R, Coffee R N, Erk B, Boll R, Schmidt C, Rolles D, Rudenko A, Rouzee A, Swiggers M, Carron S, Castagna J C, Bozek J D, Messerschmidt M, Schlotter W F, Bostedt C 2012 Appl. Phys. Lett. 100 121107Google Scholar

    [14]

    Beye M, Krupin O, Hays G, Reid A H, Rupp D, Jong S d, Lee S, Lee W S, Chuang Y D, Coffee R, Cryan J P, Glownia J M, Föhlisch A, Holmes M R, Fry A R, White W E, Bostedt C, Scherz A O, Durr H A, Schlotter W F 2012 Appl. Phys. Lett. 100 121108Google Scholar

    [15]

    Katayama T, Owada S, Togashi T, Ogawa K, Karvinen P, Vartiainen I, Eronen A, David C, Sato T, Nakajima K, Joti Y, Yumoto H, Ohashi H, Yabashi M 2016 Struct. Dynam. -US 3 034301Google Scholar

    [16]

    Droste S, Zohar S, Shen L, White V E, Diaz-Jacobo E, Coffee R N, Reid A H, Tavella F, Minitti M P, Turner J J, Robinson J S, Fry A R, Coslovich G 2020 Opt. Express 28 23545Google Scholar

    [17]

    Bionta M R, Lemke H T, Cryan J P, Glownia J M, Bostedt C, Cammarata M, Castagna J C, Ding Y, Fritz D M, Fry A R, Krzywinski J, Messerschmidt M, Schorb S, Swiggers M L, Coffee R N 2011 Opt. Express 19 21855Google Scholar

    [18]

    Kirkwood H J, Letrun R, Tanikawa T, et al. 2019 Opt. Lett. 44 1650Google Scholar

    [19]

    Diez M, Galler A, Schulz S, Boemer C, Coffee R N, Hartmann N, Heider R, Wagner M S, Helml W, Katayama T, Sato T, Sato T, Yabashi M, Bressler C 2021 Sci. Rep. 11 3562Google Scholar

    [20]

    Owada S, Nakajima K, Togashi T, Katayama T, Yumoto H, Ohashi H, Yabashi M 2019 J. Synchrotron Radiat. 26 887Google Scholar

    [21]

    Krupin O, Trigo M, Schlotter W F, et al. 2012 Opt. Express 20 11396Google Scholar

    [22]

    Attwood D 1999 Soft X-rays and Extreme Ultraviolet Radiation (New York: Cambridge) pp98–122

    [23]

    Teubner U, Wagner U, Forster E 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2993Google Scholar

    [24]

    Wang K, Qian L J, Luo H, Yuan P, Zhu H Y 2006 Opt. Express 14 6366Google Scholar

    [25]

    Wang J, Zhang Y, Shen H, Jiang Y, Wang Z 2017 Opt. Eng. 56 076107Google Scholar

  • [1] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [2] 王静, 逄金波, 郭鹤泽, 胡新宇, 周承辰, 唐文婧, 蒋锴, 夏伟. 基于层状WS2调制激光泵浦的光学参量振荡中红外运转特性. 物理学报, 2022, 71(2): 024204. doi: 10.7498/aps.71.20211409
    [3] 王静, 逄金波, 郭鹤泽, 胡新宇, 周承辰, 唐文婧, 蒋锴, 夏伟. 基于层状WS2调制激光泵浦的光学参量振荡中红外运转特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211409
    [4] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [5] 冯雷, 蒋刚. 氖原子对2000 eV X射线激光透明的产生机制. 物理学报, 2017, 66(15): 153201. doi: 10.7498/aps.66.153201
    [6] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量. 物理学报, 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [7] 胡浩丰, 王晓雷, 郭文刚, 翟宏琛, 王攀. 强飞秒激光烧蚀石英玻璃的超快时间分辨光学诊断. 物理学报, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [8] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度. 物理学报, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [9] 沈京玲, 张存林, 胡 颖, S. P. Jamison. 啁啾脉冲互相关法探测THz辐射. 物理学报, 2004, 53(7): 2212-2215. doi: 10.7498/aps.53.2212
    [10] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [11] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [12] 赵东焕. 自由电子激光中电子与辐射波相互作用有效时间的分析. 物理学报, 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [13] 刘永贵, 钱宝良, 李传胪. 具有等离子体背景的电磁泵浦自由电子激光. 物理学报, 1995, 44(3): 409-412. doi: 10.7498/aps.44.409
    [14] 蒙林, 刘盛纲. 未被捕获电子对电磁波泵自由电子激光边带不稳定性的影响. 物理学报, 1994, 43(6): 904-912. doi: 10.7498/aps.43.904
    [15] 陈基忠, 王明常, 王之江, 陆载通. 光学速调管结构喇曼自由电子激光器研究. 物理学报, 1990, 39(9): 1379-1384. doi: 10.7498/aps.39.1379
    [16] 关信安, 赵智虹. 同步泵浦-被动锁模染料激光器的基本方程及其解. 物理学报, 1989, 38(1): 16-23. doi: 10.7498/aps.38.16
    [17] 关信安, 赵智虹. 适用于CW同步泵浦染料激光器的锁模方程及其解. 物理学报, 1988, 37(2): 335-340. doi: 10.7498/aps.37.335
    [18] 鲍晓毅, 吴存恺. 相位对同步泵浦锁模染料激光系统参数的影响. 物理学报, 1988, 37(5): 851-856. doi: 10.7498/aps.37.851
    [19] 马锦秀, 徐至展. 激光等离子体拍频波加速器中泵浦倒空的消除. 物理学报, 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光. 物理学报, 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  2095
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-02-22
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回