搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波长编码的单次高时空分辨全光学探针

易友建 丁福财 朱坪 张栋俊 梁潇 孙美智 郭爱林 杨庆伟 康海涛 姚修宇 李兆良 谢兴龙 朱健强

引用本文:
Citation:

波长编码的单次高时空分辨全光学探针

易友建, 丁福财, 朱坪, 张栋俊, 梁潇, 孙美智, 郭爱林, 杨庆伟, 康海涛, 姚修宇, 李兆良, 谢兴龙, 朱健强

Wavelength encoded single-shot high-spatiotemporal resolution all-optical probe

Yi You-Jian, Ding Fu-Cai, Zhu Ping, Zhang Dong-Jun, Liang Xiao, Sun Mei-Zhi, Guo Ai-Lin, Yang Qing-Wei, Kang Hai-Tao, Yao Xiu-Yu, Li Zhao-Liang, Xie Xing-Long, Zhu Jian-Qiang
PDF
HTML
导出引用
  • 激光探针法是捕捉超快动力学过程的主要方法之一, 在等离子体物理、光化学、生物医学等领域都有着广泛的应用. 本文提出一种时间波长编码的探针光产生方案, 该方案通过级联不同相位匹配角的倍频晶体和独立的延迟线来实现时间波长编码, 具有单次高时空分辨率、高帧率、时间窗口可调范围广、时间分辨率和时间窗口参数独立可调的优点. 在实验中搭建了一套探针光产生装置, 具有247 fs的时间分辨率、4 μm的空间分辨率、4.05 THz的最高帧率、时间窗口从亚皮秒到3 ns可调, 将该装置用于捕捉飞秒激光诱导的光丝的动力学过程, 证明该探针光产生方案用于捕捉超快动力学过程的可行性. 在讨论中, 分析了探针光关键参数能达到的极限帧率为35.7 THz, 极限时间分辨率为28 fs, 时间窗口的范围可以从百飞秒到几十个纳秒进行调节. 探针光的高时空分辨率和参数互相独立可调的优点, 为多时间尺度的超快动力学过程的单次高时空分辨捕捉提供了一种可行方案.
    The laser probe is one of the main techniques for capturing ultrafast dynamic processes and has extensive applications in fields such as plasma physics, photochemistry, and biomedical science. In this work, a time-wavelength encoded optical probe generation scheme is proposed, which uses cascaded frequency doubling crystals with different phase-matching angles and independent delay lines to achieve time-wavelength encoding. This method offers single-shot high-spatiotemporal resolution, high frame rate, and a wide range of adjustable time windows. The temporal resolution of the optical probe depends on the pulse width of the second harmonic, which can be adjusted by changing the phase-matching angle of the frequency-doubling crystal. The time window of the optical probe is only related to the change in the delay line, which can be adjusted by changing the length of the delay line. Therefore, the time resolution and time window of the optical probe are independent of each other. An optical probe generation system is constructed with 247 fs temporal resolution, 4 μm spatial resolution, 4.05 THz maximal frame rate, and an adjustable time window from sub-picosecond to 3 ns. The three-dimensional spatiotemporal evolution process of plasma filaments is captured within a single shot by using the optical probe. The experimental results show that the ionization front of the plasma propagates forward at a velocity of $ {\left(2.963\pm 0.024\right)\times 10}^{8}\;{\rm{m}}/{\rm{s}} $, which is consistent with the theoretical prediction. This demonstrates the feasibility of using the probe for capturing ultrafast events. In the part of discussion, we analyze that the key parameters of the optical probe can reach a maximum frame rate of 35.7 THz, a maximum time resolution of 28 fs, and a time window range that can be adjusted from hundreds of femtoseconds to tens of nanoseconds. Finally, the optimal design parameters of the optical probe are given for different application scenarios. The optical probe generation scheme has good scalability and versatility, and can be combined with any wavelength decoding device, diffraction imaging, holographic imaging, tomography scanning, and other technologies. The high spatiotemporal resolution of the optical probe and the independent adjustability of its parameters provide a feasible solution for single-shot high spatiotemporal resolution captures of ultrafast dynamic processes on a multiple time scale.
      通信作者: 朱坪, zhp1990@siom.ac.cn ; 朱健强, jqzhu@mail.shcnc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12004403, 12074399, 12204500)、中国科学院(批准号: XDA25020105, 181231KYSB20170022, CXJJ-21S015)、上海市科委科技基金(批准号: 22YF1455300, 20ZR1464400)和科学技术部基金(批准号: 2021YFE0116700)资助的课题.
      Corresponding author: Zhu Ping, zhp1990@siom.ac.cn ; Zhu Jian-Qiang, jqzhu@mail.shcnc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004403, 12074399, 12204500), the Chinese Academy of Sciences, China (Grant Nos. XDA25020105, 181231KYSB20170022, CXJJ-21S015), the Shanghai Committee of Science and Technology, China (Grant Nos. 22YF1455300, 20ZR1464400), and the Ministry of Science and Technology, China (Grant No. 2021YFE0116700).
    [1]

    Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar

    [2]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [3]

    Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar

    [4]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [5]

    Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar

    [6]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [7]

    Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar

    [8]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar

    [9]

    Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar

    [10]

    Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar

    [11]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [12]

    Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar

    [13]

    Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar

    [14]

    Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar

    [15]

    Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar

    [16]

    Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822

    [17]

    Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar

    [18]

    Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463

    [19]

    Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar

    [20]

    Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar

    [21]

    Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar

    [22]

    Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar

    [23]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [24]

    Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar

    [25]

    Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar

    [26]

    Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar

    [27]

    Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar

    [28]

    Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar

    [29]

    Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar

  • 图 1  倍频脉冲波长和倍频晶体相位匹配角$ \theta $的关系

    Fig. 1.  Relationship between the wavelength of second harmonic and the phase-matching angle $ \theta $ of frequency-doubling crystal.

    图 2  探针光产生装置原理图. HBS, 谐波分束器; DL, 延迟线; BS, 分束器

    Fig. 2.  Schematic of the optical probe generating device. HBS, harmonic beam splitter; DL, delay line; BS, beam splitter.

    图 3  实验装置 (a) 探针光产生装置 (BS, 分束镜; RM, 反射镜; HBS, 谐波分束镜; NDF, 中性密度衰减片; TS, 平移台; BC, 光束收集器; L1, 透镜; MO, 显微物镜); (b) 解码装置原理图(DOE, 衍射光学元件; IBPF, 干涉带通滤光片)

    Fig. 3.  Experimental setup: (a) Optical probe generating setup (BS, beam splitter; RM, reflecting mirror; HBS, harmonic beam splitter; NDF, neutral density filter; TS, translation stage; BC, beam collector; L1, lens; MO, microscope objective); (b) schematic of decoding device (DOE, diffractive optical element; IBPF, interference bandpass filter).

    图 4  (a) 探针光的光谱; (b) 中心波长为416.49 nm的倍频光的时域信息; (c) 示波器测量的最大时间窗口

    Fig. 4.  (a) Spectra of the optical probe; (b) temporal information of the second harmonic with a central wavelength of 416.49 nm; (c) maximum time window measured by an oscilloscope.

    图 5  飞秒激光诱导空气成丝的动力学过程 (a) 成像系统的空间分辨率; (b) 等离子体通道中部的动力学过程; (c) 不同发次的等离子体通道尾部的动力学过程

    Fig. 5.  Dynamic process of femtosecond laser induced air filaments: (a) Spatial resolution of the imaging system; (b) dynamic process in the middle of the plasma channel; (c) dynamic process at the tail of the plasma channel on different shot.

    图 6  倍频脉冲的时间分辨率(蓝线)、光谱带宽(红线)和倍频晶体厚度的关系

    Fig. 6.  Relationship between temporal resolution (blue line), spectral bandwidth (red line) and thickness of frequency-doubling crystal.

    图 7  探针光的时间窗口和倍频脉冲的光谱带宽的关系

    Fig. 7.  Relationship between optimum time window of optical probe and spectral bandwidth of the second harmonic.

    表 1  不同场景中探针光的最优参数

    Table 1.  Optimal design of optical probe parameters in different scenarios.

    场景需求 倍频晶体
    厚度/mm
    时间分
    辨率/fs
    帧数 帧率/
    GHz
    时间窗
    口/ps
    超高帧率 0.1 28 4 35700 0.112
    高帧率和
    高帧数
    2.0 186 26 5370 4.8
    大时间窗口 2.0 186 26 2.6 10000
    下载: 导出CSV
  • [1]

    Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar

    [2]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [3]

    Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar

    [4]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [5]

    Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar

    [6]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [7]

    Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar

    [8]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar

    [9]

    Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar

    [10]

    Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar

    [11]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [12]

    Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar

    [13]

    Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar

    [14]

    Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar

    [15]

    Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar

    [16]

    Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822

    [17]

    Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar

    [18]

    Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463

    [19]

    Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar

    [20]

    Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar

    [21]

    Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar

    [22]

    Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar

    [23]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [24]

    Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar

    [25]

    Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar

    [26]

    Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar

    [27]

    Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar

    [28]

    Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar

    [29]

    Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar

  • [1] 潘彬雄, 弓晟, 张鹏, 刘子叶, 皮彭健, 陈旺, 黄文强, 王保举, 詹求强. 基于点扫描的高时空分辨荧光显微成像技术进展. 物理学报, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [2] 沈姗姗, 顾国华, 陈钱, 何睿清, 曹青青. 时空域联合编码扩频单光子计数成像方法. 物理学报, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [3] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [4] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [5] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [6] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [7] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211665
    [8] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学. 物理学报, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [9] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管. 物理学报, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [10] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [11] 祝晓松, 张庆斌, 兰鹏飞, 陆培祥. 分子轨道高时空分辨成像. 物理学报, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [12] 屠惠琳, 肖绍球, 杨智杰, 王秉中. 基于时间反演电磁波的微结构天线的单频点超分辨力聚焦研究. 物理学报, 2014, 63(8): 084102. doi: 10.7498/aps.63.084102
    [13] 秦华, 类成新, 刘汉法, 葛硕硕. 高次柱面反射型太阳能聚光镜的光学设计. 物理学报, 2013, 62(10): 104215. doi: 10.7498/aps.62.104215
    [14] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究. 物理学报, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [15] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [16] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系. 物理学报, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [17] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [18] 贺雪鹏, 刘院省, 刘世炳. 超快激光抽运-探测中探针光时间延迟量的 实时测量原理与光学设计. 物理学报, 2011, 60(2): 024212. doi: 10.7498/aps.60.024212
    [19] 顾敏, 谭维翰, 林尊琪, 毕无忌, 余文炎, 邓锡铭. 激光等离子体二次谐波时间分辨光谱的细结构. 物理学报, 1987, 36(5): 655-659. doi: 10.7498/aps.36.655
    [20] 谭维翰, 林尊琪, 顾敏, 施阿英, 余文炎, 邓锡铭. 激光频带宽度对二次谐波时空分辨结构的影响. 物理学报, 1987, 36(5): 660-667. doi: 10.7498/aps.36.660
计量
  • 文章访问数:  1002
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-18
  • 上网日期:  2023-11-02
  • 刊出日期:  2023-11-20

/

返回文章
返回