搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用单分子光学探针测量幂律分布的聚合物动力学

李斌 张国峰 景明勇 陈瑞云 秦成兵 高岩 肖连团 贾锁堂

利用单分子光学探针测量幂律分布的聚合物动力学

李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂
PDF
导出引用
  • 研究聚合物薄膜纳米尺度的动力学特性对于高性能材料的制备具有重要的意义.本文利用尼罗红单分子作为光学探针吸附在聚丙烯酸甲酯(PMA)聚合物链上,研究该聚合物薄膜的动力学特性.通过单分子散焦宽场荧光成像显微镜技术测量了单分子随PMA聚合物链转动弛豫的三维再取向特性,当环境温度高于PMA的玻璃点温度19 K时,发现处于PMA聚合物薄膜中的单分子光学探针的转动态和非转动态的持续时间概率密度服从指数截止的幂律分布.研究结果表明该温度下PMA聚合物薄膜的纳米环境动力学仍存在空间和时间异构性.
      通信作者: 肖连团, guofeng.zhang@sxu.edu.cn;xlt@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:61527824,11434007,11374196,11404200,11504216,U1510133)、教育部长江学者和创新团队发展计划(批准号:IRT13076)、中国博士后科学基金(批准号:2014M550151)和山西省留学回国人员科技活动择优项目资助的课题.
    [1]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973

    [2]

    Janssen K P F, de Cremer G, Neely R K, Kubarev A V, van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J 2014 Chem. Soc. Rev. 43 990

    [3]

    Kern A M, Zhang D, Brecht M, Chizhik A I, Failla A V, Wackenhut F, Meixner A J 2014 Chem. Soc. Rev. 43 1263

    [4]

    Kozankiewicz B, Orrit M 2014 Chem. Soc. Rev. 43 1029

    [5]

    Stennett E M S, Ciuba M A, Levitus M 2014 Chem. Soc. Rev. 43 1057

    [6]

    van de Linde S, Sauer M 2014 Chem. Soc. Rev. 43 1076

    [7]

    Zheng Y J, Zhang Z Y, Zhang X Z 2009 Acta Phys. Sin. 58 8194(in Chinese)[郑雨军, 张兆玉, 张西忠2009物理学报58 8194]

    [8]

    Han B P, Zheng Y J, Hu F, Fan Q B 2015 Chin. Phys. Lett. 32 063303

    [9]

    Orrit M 2014 Nat. Photon. 8 887

    [10]

    Oh H, Green P F 2009 Nat. Mater. 8 139

    [11]

    Wöll D, Braeken E, Deres A, de Schryver F C, Uji-i H, Hofkens J 2009 Chem. Soc. Rev. 38 313

    [12]

    Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M 2010 Science 330 353

    [13]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Muller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Mullen K, de Schryver F, Hofkens J 2014 Nat. Nanotech. 9 131

    [14]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C M, Rief M 2011 Science 334 512

    [15]

    Rezus Y L, Walt S G, Lettow R, Renn A, Zumofen G, Gotzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [16]

    Puller V, Lounis B, Pistolesi F 2013 Phys. Rev. Lett. 110 125501

    [17]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452

    [18]

    Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N 2015 Sci. Rep. 5 10662

    [19]

    Kulzer F, Xia T, Orrit M 2010 Angew Chem. Int. Ed. Engl. 49 854

    [20]

    Paeng K, Kaufman L J 2014 Chem. Soc. Rev. 43 977

    [21]

    Piwonski H, Sokolowski A, Waluk J 2015 J. Phys. Chem. Lett. 6 2477

    [22]

    Krause S, Neumann M, Frobe M, Magerle R, von Borczyskowski C 2016 ACS Nano 10 1908

    [23]

    Bolinger J C, Traub M C, Adachi T, Barbara P F 2016 Science 331 565

    [24]

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364(in Chinese)[张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂2009物理学报58 2364]

    [25]

    Deres A, Floudas G A, Mllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703

    [26]

    Vogelsang J, Brazard J, Adachi T, Bolinger J C, Barbara P F 2011 Angew. Chem. Int. Edit. 50 2257

    [27]

    Abadi M, Serag M F, Habuchi S 2015 Macromolecules 48 6263

    [28]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308

    [29]

    Habuchi S, Fujiwara S, Yamamoto T, Vacha M, Tezuka Y 2013 Anal. Chem. 85 7369

    [30]

    Schob A, Cichos F, Schuster J, von Borczyskowski C 2004 Eur. Polym. J. 40 1019

    [31]

    Vallee R A L, Cotlett M, van der Auweraer M, Hofkens J, Mullen K, de Schryver F C 2004 J. Am. Chem. Soc. 126 2296

    [32]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [33]

    Cser A, Nagy K, Biczok L 2002 Chem. Phys. Lett. 360 473

    [34]

    Yoo H, Furumaki S, Yang J, Lee J E, Chung H, Oba T, Kobayashi H, Rybtchinski B, Wilson T M, Wasielewski M R, Vacha M, Kim D 2012 J. Phys. Chem. B 116 12878

    [35]

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803(in Chinese)[王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂2015物理学报64 247803]

  • [1]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973

    [2]

    Janssen K P F, de Cremer G, Neely R K, Kubarev A V, van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J 2014 Chem. Soc. Rev. 43 990

    [3]

    Kern A M, Zhang D, Brecht M, Chizhik A I, Failla A V, Wackenhut F, Meixner A J 2014 Chem. Soc. Rev. 43 1263

    [4]

    Kozankiewicz B, Orrit M 2014 Chem. Soc. Rev. 43 1029

    [5]

    Stennett E M S, Ciuba M A, Levitus M 2014 Chem. Soc. Rev. 43 1057

    [6]

    van de Linde S, Sauer M 2014 Chem. Soc. Rev. 43 1076

    [7]

    Zheng Y J, Zhang Z Y, Zhang X Z 2009 Acta Phys. Sin. 58 8194(in Chinese)[郑雨军, 张兆玉, 张西忠2009物理学报58 8194]

    [8]

    Han B P, Zheng Y J, Hu F, Fan Q B 2015 Chin. Phys. Lett. 32 063303

    [9]

    Orrit M 2014 Nat. Photon. 8 887

    [10]

    Oh H, Green P F 2009 Nat. Mater. 8 139

    [11]

    Wöll D, Braeken E, Deres A, de Schryver F C, Uji-i H, Hofkens J 2009 Chem. Soc. Rev. 38 313

    [12]

    Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M 2010 Science 330 353

    [13]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Muller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Mullen K, de Schryver F, Hofkens J 2014 Nat. Nanotech. 9 131

    [14]

    Stigler J, Ziegler F, Gieseke A, Gebhardt J C M, Rief M 2011 Science 334 512

    [15]

    Rezus Y L, Walt S G, Lettow R, Renn A, Zumofen G, Gotzinger S, Sandoghdar V 2012 Phys. Rev. Lett. 108 093601

    [16]

    Puller V, Lounis B, Pistolesi F 2013 Phys. Rev. Lett. 110 125501

    [17]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452

    [18]

    Sugo N, Morimatsu M, Arai Y, Kousoku Y, Ohkuni A, Nomura T, Yanagida T, Yamamoto N 2015 Sci. Rep. 5 10662

    [19]

    Kulzer F, Xia T, Orrit M 2010 Angew Chem. Int. Ed. Engl. 49 854

    [20]

    Paeng K, Kaufman L J 2014 Chem. Soc. Rev. 43 977

    [21]

    Piwonski H, Sokolowski A, Waluk J 2015 J. Phys. Chem. Lett. 6 2477

    [22]

    Krause S, Neumann M, Frobe M, Magerle R, von Borczyskowski C 2016 ACS Nano 10 1908

    [23]

    Bolinger J C, Traub M C, Adachi T, Barbara P F 2016 Science 331 565

    [24]

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364(in Chinese)[张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂2009物理学报58 2364]

    [25]

    Deres A, Floudas G A, Mllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703

    [26]

    Vogelsang J, Brazard J, Adachi T, Bolinger J C, Barbara P F 2011 Angew. Chem. Int. Edit. 50 2257

    [27]

    Abadi M, Serag M F, Habuchi S 2015 Macromolecules 48 6263

    [28]

    Zhang G, Xiao L, Zhang F, Wang X, Jia S 2010 Phys. Chem. Chem. Phys. 12 2308

    [29]

    Habuchi S, Fujiwara S, Yamamoto T, Vacha M, Tezuka Y 2013 Anal. Chem. 85 7369

    [30]

    Schob A, Cichos F, Schuster J, von Borczyskowski C 2004 Eur. Polym. J. 40 1019

    [31]

    Vallee R A L, Cotlett M, van der Auweraer M, Hofkens J, Mullen K, de Schryver F C 2004 J. Am. Chem. Soc. 126 2296

    [32]

    Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511

    [33]

    Cser A, Nagy K, Biczok L 2002 Chem. Phys. Lett. 360 473

    [34]

    Yoo H, Furumaki S, Yang J, Lee J E, Chung H, Oba T, Kobayashi H, Rybtchinski B, Wilson T M, Wasielewski M R, Vacha M, Kim D 2012 J. Phys. Chem. B 116 12878

    [35]

    Wang Z, Zhang G F, Li B, Chen R Y, Qin C B, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 247803(in Chinese)[王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂2015物理学报64 247803]

  • [1] 张西忠, 张兆玉, 郑雨军. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [2] 杜国同, 秦冠仕, 张继森, 吴长锋, 王继伟, 秦伟平. 单分子-光子制冷泵的热力学行为. 物理学报, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [3] 张国峰, 程峰钰, 贾锁堂, 孙建虎, 肖连团, 张芳. 室温单分子偶极取向与量子化再取向动力学实验研究. 物理学报, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [4] 尉伟峰. 基于选择模式的幂律生成机制. 物理学报, 2009, 58(4): 2127-2135. doi: 10.7498/aps.58.2127
    [5] 尉伟峰. 选择理论生成幂律的扩展性研究. 物理学报, 2009, 58(10): 6696-6702. doi: 10.7498/aps.58.6696
    [6] 黄 涛, 王晓波, 邵军虎, 肖连团, 贾锁堂, 彭双艳. 基于光子统计测量的单分子判别. 物理学报, 2005, 54(11): 5116-5120. doi: 10.7498/aps.54.5116
    [7] 吴瑞祥, 张国峰, 乔志星, 陈瑞云. 外电场操控单分子的偶极取向极化特性研究. 物理学报, 2019, 68(12): 128201. doi: 10.7498/aps.68.20190361
    [8] 李竟成, 赵爱迪, 王兵. Au(111)表面吸附单个八乙基钴卟啉分子的电子态和输运性质调控. 物理学报, 2015, 64(7): 076803. doi: 10.7498/aps.64.076803
    [9] 马建兵, 翟永亮, 农大官, 李菁华, 付航, 张兴华, 李明, 陆颖, 徐春华. 基于片层光照明的新型单分子横向磁镊. 物理学报, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [10] 覃 森, 戴冠中, 王 林, 范 明. 一类权重网络的加速演化模型. 物理学报, 2007, 56(11): 6326-6333. doi: 10.7498/aps.56.6326
    [11] 王光增, 包哲静, 韩祯祥, 曹一家. 一种新型电力网络局域世界演化模型. 物理学报, 2009, 58(6): 3597-3602. doi: 10.7498/aps.58.3597
    [12] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学. 物理学报, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [13] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [14] 杨俊升, 黄多辉. 环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究. 物理学报, 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [15] 龚志强, 支 蓉, 封国林, 王德英. 基于幂律尾指数研究中国降水的时空演变特征. 物理学报, 2006, 55(11): 6185-6191. doi: 10.7498/aps.55.6185
    [16] 许裕栗, 陈学谦, 陈厚样, 徐首红, 刘洪来. 接枝聚合物对小分子的选择性吸附研究. 物理学报, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [17] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [18] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [19] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究. 物理学报, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [20] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
  • 引用本文:
    Citation:
计量
  • 文章访问数:  995
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14
  • 修回日期:  2016-07-31
  • 刊出日期:  2016-11-05

利用单分子光学探针测量幂律分布的聚合物动力学

  • 1. 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学极端光学协同创新中心, 太原 030006
  • 通信作者: 肖连团, guofeng.zhang@sxu.edu.cn;xlt@sxu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:61527824,11434007,11374196,11404200,11504216,U1510133)、教育部长江学者和创新团队发展计划(批准号:IRT13076)、中国博士后科学基金(批准号:2014M550151)和山西省留学回国人员科技活动择优项目资助的课题.

摘要: 研究聚合物薄膜纳米尺度的动力学特性对于高性能材料的制备具有重要的意义.本文利用尼罗红单分子作为光学探针吸附在聚丙烯酸甲酯(PMA)聚合物链上,研究该聚合物薄膜的动力学特性.通过单分子散焦宽场荧光成像显微镜技术测量了单分子随PMA聚合物链转动弛豫的三维再取向特性,当环境温度高于PMA的玻璃点温度19 K时,发现处于PMA聚合物薄膜中的单分子光学探针的转动态和非转动态的持续时间概率密度服从指数截止的幂律分布.研究结果表明该温度下PMA聚合物薄膜的纳米环境动力学仍存在空间和时间异构性.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回