搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维层状半导体Nb4P2S21单晶的面内光学各向异性

程秋振 黄引 李玉辉 张凯 冼国裕 刘鹤元 车冰玉 潘禄禄 韩烨超 祝轲 齐琦 谢耀锋 潘金波 陈海龙 李永峰 郭辉 杨海涛 高鸿钧

引用本文:
Citation:

准一维层状半导体Nb4P2S21单晶的面内光学各向异性

程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧

In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb4P2S21 single crystal

Cheng Qiu-Zhen, Huang Yin, Li Yu-Hui, Zhang Kai, Xian Guo-Yu, Liu He-Yuan, Che Bing-Yu, Pan Lu-Lu, Han Ye-Chao, Zhu Ke, Qi Qi, Xie Yao-Feng, Pan Jin-Bo, Chen Hai-Long, Li Yong-Feng, Guo Hui, Yang Hai-Tao, Gao Hong-Jun
PDF
HTML
导出引用
  • 过渡金属磷硫化合物MPS (M为过渡金属)是一类新型二维范德瓦耳斯材料, 因其独特的磁学、光学和光电性能而得到广泛关注. 其中, Nb4P2S21是具有准一维链状结构的层状材料, 其各向异性的光学性质等物性仍缺乏深入研究. 本文主要通过偏振Raman光谱和角度依赖的飞秒瞬态吸收光谱对Nb4P2S21单晶的光学各向异性进行研究, Nb4P2S21单晶的偏振Raman光谱表明在平行和垂直极化构型下, 202 cm–1处的Raman振动峰强度均表现出二重对称性, 而489 cm–1处的Raman振动峰强度均表现出四重对称性. 而超快载流子动力学研究表明在平行极化构型下, Nb4P2S21单晶在光激发后的热载流子数目和弛豫速率均表现出各向异性. 这些结果有助于理解Nb4P2S21单晶的面内各向异性光学性质, 并将进一步促进其在角度关联的低维光电子器件中的应用.
    Transition-metal phosphorous chalcogenide MPS (M = transition metal), an emerging type of two-dimensional (2D) van der Waals material with the unique optical and opto-electronic properties, has received much attention. The quasi-one-dimensional chain structure of Nb4P2S21 will possess the strong anisotropic optical and photoelectric properties. Therefore, the single crystal and low-dimensional materials of Nb4P2S21 have potential applications in new polarization controllers, polarization-sensitive photoelectronic detectors, etc. However, there is still a lack of research on the anisotropic optical properties of the high-quality Nb4P2S21 single crystals. Herein, the millimeter-sized Nb4P2S21 single crystals are successfully prepared by the chemical vapor transport method. The chemical composition, the crystal structure and the anisotropic optical properties of the Nb4P2S21 single crystals are carefully analyzed. The energy dispersive X-ray spectroscopy results show that the element distribution is uniform and the element ratio is close to the stoichiometric ratio. The X-ray diffraction and the transmission electron microscopy results show a good crystallinity. The absorption spectra shows that the optical band gap of the Nb4P2S21 single crystal is 1.8 eV. Interestingly, the Nb4P2S21 single crystal can be mechanically exfoliated to obtain few-layer material. The thickness-dependent Raman spectra show that the Raman vibration peaks of bulk and few-layer Nb4P2S21 each have only a weak shift, indicating a weak interlayer interaction in the Nb4P2S21 single crystal. In order to make an in-depth study of the optical properties of Nb4P2S21 single crystals, the polarized-dependent Raman spectra and the femtosecond transient absorption (TA) spectra by using pump pulses and probe pulses with a wavelength of 400 nm and a wavelength range of 500–700 nm are recorded. Importantly, the polarized-dependent Raman scattering spectra with the angle-dependent measurements reveal that the intensity of Raman peak at 202 cm–1 and at 489 cm–1 show a 2-fold symmetry and a 4-fold symmetry in the parallel and vertical polarization configurations, respectively. Moreover, the results of ultrafast carrier dynamics with the in-plane rotation angles of Nb4P2S21 single crystals in the parallel polarization configurations, clearly indicate that both the hot carrier number and the relaxation rate after photoexcitation have the in-plane anisotropic properties. These results are useful in understanding the in-plane anisotropic optical properties of Nb4P2S21 single crystal, which can further promote their applications in the low-dimensional angle-dependent optoelectronics.
      通信作者: 李永峰, yfli@cup.edu.cn ; 郭辉, guohui@iphy.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDB33030100)、国家重点研发计划(批准号: 2022YFA1204104)和国家自然科学基金(批准号: 61888102, 22238012, 22178384)资助的课题.
      Corresponding author: Li Yong-Feng, yfli@cup.edu.cn ; Guo Hui, guohui@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33030100), the National Key R&D Program of China (Grant No. 2022YFA1204104), the National Natural Science Foundation of China (Grant Nos. 61888102, 22238012, 22178384).
    [1]

    Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D, Mandrus D 2023 Phys. Rev. B 107 165125Google Scholar

    [2]

    Liu Q Y, Wang L, Fu Y, Zhang X, Huang L L, Su H M, Lin J H, Chen X B, Yu D P, Cui X D, Mei J W, Dai J F 2021 Phys. Rev. B 103 235411Google Scholar

    [3]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F S, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [4]

    Li P Y, Zhang J T, Zhu C, Shen W F, Hu C G, Fu W, Yan L, Zhou L J, Zheng L, Lei H X, Liu Z, Zhao W N, Gao P Q, Yu P, Yang G W 2021 Adv. Mater. 33 2102541Google Scholar

    [5]

    Tan J N, Hu H M, Cai B, Xu D G, Ouyang G 2022 Phys. Rev. B 106 195424Google Scholar

    [6]

    Wang F, Sendeku M G 2022 Nanostructured Materials for Sustainable Energy: Design, Evaluation, and Applications (Washington, DC: American Chemical Society) pp1–25

    [7]

    Feringa F, Vink J M, van Wees B J 2022 Phys. Rev. B 106 224409Google Scholar

    [8]

    Storm A, Köster J, Ghorbani-Asl M, Kretschmer S, Gorelik T E, Kinyanjui M K, Krasheninnikov A V, Kaiser U 2023 ACS Nano 17 4250Google Scholar

    [9]

    Xiao Z, Dai X Y, Jiang D T, Xie H G, Liu X P, Wu M L, Liu D M, Li Y, Qian Z F, Wang R H 2023 Adv. Funct. Mater. DOI: 10.1002/adfm.202304766

    [10]

    Oliveira F M, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R 2023 Small Methods 7 2201358Google Scholar

    [11]

    Chen Q, Ding Q Y, Wang Y T, Xu Y H, Wang J L 2020 J. Phys. Chem. C 124 12075Google Scholar

    [12]

    Samal R, Sanyal G, Chakraborty B, Rout C S 2021 J. Mater. Chem. A 9 2560Google Scholar

    [13]

    Sen D, Saha-Dasgupta T 2023 Phys. Rev. Mater. 7 064008Google Scholar

    [14]

    Peng J, Yang X Y, Lu Z Y, Huang L, Chen X Y, He M, Shen J D, Xing Y, Liu M F, Qu Z, Wang Z C, Li L L, Dong S, Liu J M 2023 Adv. Quantum Technol. 6 2200105Google Scholar

    [15]

    Chu H, Roh C J, Island J O, Li C, Lee S, Chen J, Park J G, Young A F, Lee J S, Hsieh D 2020 Phys. Rev. Lett. 124 027601Google Scholar

    [16]

    Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai-Williamson P, Hamidov H, Daisenberger D, Saxena S S 2018 Phys. Rev. Lett. 121 266801Google Scholar

    [17]

    Xia B Q, He B W, Zhang J J, Li L Q, Zhang Y Z, Yu J G, Ran J R, Qiao S Z 2022 Adv. Energy Mater. 12 2201449Google Scholar

    [18]

    Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar

    [19]

    Chen C, Liu H, Lai Q L, Mao X Y, Fu J, Fu Z M, Zeng H L 2022 Nano Lett. 22 3275Google Scholar

    [20]

    Wang X G, Xiong T, Zhao K, Zhou Z Q, Xin K Y, Deng H X, Kang J, Yang J H, Liu Y Y, Wei Z M 2022 Adv. Mater. 34 2107206Google Scholar

    [21]

    Sun J, Heo J, Yun H 2015 Acta Cryst. 71 278Google Scholar

    [22]

    Goh E Y, Kim S J, Jung D 2002 J. Solid State Chem. 168 119Google Scholar

    [23]

    Camerel F, Gabriel J C P, Batail P, Davidson P, Lemaire B, Schmutz M, Gulik-Krzywicki T, Bourgaux C 2002 Nano Lett. 2 403Google Scholar

    [24]

    Yu J, Yun H 2011 Acta Cryst. 67 i24Google Scholar

    [25]

    Lee Y, Yoon W, Yun H 2014 Acta Cryst. 70 i8Google Scholar

    [26]

    Xu X Q, Yang L, Zheng W, Zhang H, Wu F S, Tian Z H, Zhang P G, Sun Z M 2022 Mater. Rep. Energy 2 100080Google Scholar

    [27]

    Choi K H, Oh S, Chae S, Jeong B J, Kim B J, Jeon J, Lee S H, Yoon S O, Woo C, Dong X, Ghulam A, Lim C, Liu Z, Wang C, Junaid A, Lee J H, Yu H K, Choi J Y 2021 J. Alloys Compd. 864 158811Google Scholar

    [28]

    Zhao K, Yang J H, Zhong M Z, Gao Q, Wang Y, Wang X T, Shen W F, Hu C G, Wang K Y, Shen G Z, Li M, Wang J L, Hu W D, Wei Z M 2021 Adv. Funct. Mater. 31 2006601Google Scholar

    [29]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [30]

    Bang H, Kim Y, Kim S, Kim S J 2008 J. Solid State Chem. 181 1798Google Scholar

    [31]

    Wang R J, Cui Q L, Zhu W, Niu Y J, Liu Z F, Zhang L, Wu X J, Chen S M, Song L 2022 Chin. Phys. B 31 096802Google Scholar

    [32]

    Chen H P, Li Y, Wu H B, Peng Y, Fang Y, Chen C Z, Xie S P, Song L 2019 Solid State Commun. 289 56Google Scholar

    [33]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar

    [34]

    Pimenta M A, Resende G C, Ribeiro H B, Carvalho B R 2021 Phys. Chem. Chem. Phys. 23 27103Google Scholar

  • 图 1  (a) Nb4P2S21晶体的原子结构模型; (b) Nb4P2S21单晶的XRD谱和光学照片; (c), (d) Nb4P2S21单晶的SEM图像和EDS成分分析; (e) Nb4P2S21 单晶的高分辨透射电子显微镜图像和选区电子衍射图; (f) Nb4P2S21 单晶的紫外-可见-近红外吸收光谱

    Fig. 1.  (a) Atomic schematic of Nb4P2S21 crystalline structure; (b) the X-ray diffraction pattern of the Nb4P2S21 single crystal and the photo of typical Nb4P2S21 single crystals (inset); (c), (d) the SEM image and EDS results of Nb4P2S21 single crystal; (e) the HRTEM image and selected area electron diffraction pattern of Nb4P2S21 single crystal; (f) the UV-VIS-NIR absorption spectrum of Nb4P2S21 single crystal.

    图 2  (a) Nb4P2S21纳米片的光学照片; (b) Nb4P2S21纳米片的AFM形貌图; (c) Nb4P2S21单晶和不同层数纳米片的Raman光谱; (d) 波数为342 cm–1和412 cm–1的Raman振动峰随层数的变化

    Fig. 2.  (a) Optical image of the mechanically exfoliated Nb4P2S21 nanosheets; (b) the AFM image of the Nb4P2S21 nanosheets with different layers; (c) the thickness-dependent Raman spectrum of the Nb4P2S21 single crystal and nanosheets with different layers; (d) the evolution of Raman peaks located at 342 cm–1 and 412 cm–1 with different layers of Nb4P2S21 nanosheets.

    图 3  (a), (b) 平行和垂直构型下, Nb4P2S21单晶随角度变化的偏振Raman峰强度的等高彩图. (c), (d) 平行和垂直构型下, 202 cm–1处的偏振Raman峰强度的极图. (e), (f)平行和垂直构型下, 489 cm–1处的偏振Raman峰强度的极图

    Fig. 3.  (a), (b) Contour colour map of polarization Raman intensities under the parallel and vertical configurations; (c), (d) polar plots of the intensity of polarization Raman peak at 202 cm–1 with the rotation angle; (e), (f) polar plots of the intensity of polarization Raman peak at 489 cm–1 with the rotation angle.

    图 4  (a) 飞秒瞬态吸收光谱测试示意图, θ表示Nb4P2S21的面内旋转角; (b), (c) θ = 0°和θ = 90°时, 400 nm光激发后Nb4P2S21在不同时间延迟(∆τ)下的瞬态吸收光谱, ∆OD表示泵浦导致的光密度变化(m∆OD = 10–3 ∆OD); (d) 光激发后∆τ = 440 fs, θ = 0°和θ = 90°时的瞬态吸收光谱; (e) θ = 0°, 30°, 45°, 70°, 90°时, 680 nm探测波长下的载流子动力学曲线; (f) ∆τ = 440 fs时, 不同角度瞬态吸收信号强度的极图

    Fig. 4.  (a) Schematic illustration of the femtosecond transient absorption (TA) spectroscopy measurement. θ is the in-plane rotation angle of Nb4P2S21; (b), (c) time delay dependent TA spectra of the Nb4P2S21 after 400 nm excitation at the rotation angle of 0° and 90°. ∆OD is the change of optical density due to pumping (m∆OD = 10–3 ∆OD); (d) TA spectra at the time delay ∆τ of 440 fs after photoexcitation at the rotation angle of 0° and 90°; (e) TA dynamics probed at 680 nm at the sample rotation angle of 0°, 30°, 45°, 70° and 90°; (f) the pole plot of the absorption intensity of the different angle after photoexcitation at the time delay ∆τ of 440 fs

    表 1  垂直和平行构型下Raman振动峰强随角度的变化

    Table 1.  Relationship between Raman peak intensity and angle in vertical and parallel configurations.

    Raman
    振动
    模式
    角度依赖的Raman强度
    平行构型($ {\boldsymbol{e}}_{{\rm{i}}}//{\boldsymbol{e}}_{{\rm{S}}} $) 垂直构型($ {\boldsymbol{e}}_{{\rm{i}}}\perp {\boldsymbol{e}}_{{\rm{S}}} $)
    A1 $ |a \cos^2 \varphi + c \sin^2 \varphi |^2 $ $ | - a \sin \varphi \cos \varphi + c\sin \varphi \cos \varphi |^2 $
    A2 0 0
    B1 $ {\left|e{\rm{c}}{\rm{o}}{\rm{s}}2\varphi \right|}^{2} $ $ {\left|e{\rm{s}}{\rm{i}}{\rm{n}}2\varphi \right|}^{2} $
    B2 0 0
    下载: 导出CSV
  • [1]

    Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D, Mandrus D 2023 Phys. Rev. B 107 165125Google Scholar

    [2]

    Liu Q Y, Wang L, Fu Y, Zhang X, Huang L L, Su H M, Lin J H, Chen X B, Yu D P, Cui X D, Mei J W, Dai J F 2021 Phys. Rev. B 103 235411Google Scholar

    [3]

    Mi M J, Zheng X W, Wang S L, Zhou Y, Yu L X, Xiao H, Song H N, Shen B, Li F S, Bai L H, Chen Y X, Wang S P, Liu X H, Wang Y L 2022 Adv. Funct. Mater. 32 2112750Google Scholar

    [4]

    Li P Y, Zhang J T, Zhu C, Shen W F, Hu C G, Fu W, Yan L, Zhou L J, Zheng L, Lei H X, Liu Z, Zhao W N, Gao P Q, Yu P, Yang G W 2021 Adv. Mater. 33 2102541Google Scholar

    [5]

    Tan J N, Hu H M, Cai B, Xu D G, Ouyang G 2022 Phys. Rev. B 106 195424Google Scholar

    [6]

    Wang F, Sendeku M G 2022 Nanostructured Materials for Sustainable Energy: Design, Evaluation, and Applications (Washington, DC: American Chemical Society) pp1–25

    [7]

    Feringa F, Vink J M, van Wees B J 2022 Phys. Rev. B 106 224409Google Scholar

    [8]

    Storm A, Köster J, Ghorbani-Asl M, Kretschmer S, Gorelik T E, Kinyanjui M K, Krasheninnikov A V, Kaiser U 2023 ACS Nano 17 4250Google Scholar

    [9]

    Xiao Z, Dai X Y, Jiang D T, Xie H G, Liu X P, Wu M L, Liu D M, Li Y, Qian Z F, Wang R H 2023 Adv. Funct. Mater. DOI: 10.1002/adfm.202304766

    [10]

    Oliveira F M, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R 2023 Small Methods 7 2201358Google Scholar

    [11]

    Chen Q, Ding Q Y, Wang Y T, Xu Y H, Wang J L 2020 J. Phys. Chem. C 124 12075Google Scholar

    [12]

    Samal R, Sanyal G, Chakraborty B, Rout C S 2021 J. Mater. Chem. A 9 2560Google Scholar

    [13]

    Sen D, Saha-Dasgupta T 2023 Phys. Rev. Mater. 7 064008Google Scholar

    [14]

    Peng J, Yang X Y, Lu Z Y, Huang L, Chen X Y, He M, Shen J D, Xing Y, Liu M F, Qu Z, Wang Z C, Li L L, Dong S, Liu J M 2023 Adv. Quantum Technol. 6 2200105Google Scholar

    [15]

    Chu H, Roh C J, Island J O, Li C, Lee S, Chen J, Park J G, Young A F, Lee J S, Hsieh D 2020 Phys. Rev. Lett. 124 027601Google Scholar

    [16]

    Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai-Williamson P, Hamidov H, Daisenberger D, Saxena S S 2018 Phys. Rev. Lett. 121 266801Google Scholar

    [17]

    Xia B Q, He B W, Zhang J J, Li L Q, Zhang Y Z, Yu J G, Ran J R, Qiao S Z 2022 Adv. Energy Mater. 12 2201449Google Scholar

    [18]

    Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar

    [19]

    Chen C, Liu H, Lai Q L, Mao X Y, Fu J, Fu Z M, Zeng H L 2022 Nano Lett. 22 3275Google Scholar

    [20]

    Wang X G, Xiong T, Zhao K, Zhou Z Q, Xin K Y, Deng H X, Kang J, Yang J H, Liu Y Y, Wei Z M 2022 Adv. Mater. 34 2107206Google Scholar

    [21]

    Sun J, Heo J, Yun H 2015 Acta Cryst. 71 278Google Scholar

    [22]

    Goh E Y, Kim S J, Jung D 2002 J. Solid State Chem. 168 119Google Scholar

    [23]

    Camerel F, Gabriel J C P, Batail P, Davidson P, Lemaire B, Schmutz M, Gulik-Krzywicki T, Bourgaux C 2002 Nano Lett. 2 403Google Scholar

    [24]

    Yu J, Yun H 2011 Acta Cryst. 67 i24Google Scholar

    [25]

    Lee Y, Yoon W, Yun H 2014 Acta Cryst. 70 i8Google Scholar

    [26]

    Xu X Q, Yang L, Zheng W, Zhang H, Wu F S, Tian Z H, Zhang P G, Sun Z M 2022 Mater. Rep. Energy 2 100080Google Scholar

    [27]

    Choi K H, Oh S, Chae S, Jeong B J, Kim B J, Jeon J, Lee S H, Yoon S O, Woo C, Dong X, Ghulam A, Lim C, Liu Z, Wang C, Junaid A, Lee J H, Yu H K, Choi J Y 2021 J. Alloys Compd. 864 158811Google Scholar

    [28]

    Zhao K, Yang J H, Zhong M Z, Gao Q, Wang Y, Wang X T, Shen W F, Hu C G, Wang K Y, Shen G Z, Li M, Wang J L, Hu W D, Wei Z M 2021 Adv. Funct. Mater. 31 2006601Google Scholar

    [29]

    Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, Cheong H 2019 Nat. Commun. 10 345Google Scholar

    [30]

    Bang H, Kim Y, Kim S, Kim S J 2008 J. Solid State Chem. 181 1798Google Scholar

    [31]

    Wang R J, Cui Q L, Zhu W, Niu Y J, Liu Z F, Zhang L, Wu X J, Chen S M, Song L 2022 Chin. Phys. B 31 096802Google Scholar

    [32]

    Chen H P, Li Y, Wu H B, Peng Y, Fang Y, Chen C Z, Xie S P, Song L 2019 Solid State Commun. 289 56Google Scholar

    [33]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar

    [34]

    Pimenta M A, Resende G C, Ribeiro H B, Carvalho B R 2021 Phys. Chem. Chem. Phys. 23 27103Google Scholar

  • [1] 孙思杰, 蒋晗. 各向异性界面动力学对深胞晶生长形态稳定性的影响. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240362
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [4] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [5] 欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天. GeSe2中强各向异性偏振相关的非线性光学响应. 物理学报, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [6] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射. 物理学报, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [7] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器. 物理学报, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [8] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [9] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [10] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟. 物理学报, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [11] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [12] 尚学府, 陶向明, 陈文斌, 陈会贤, 王 淼, 谭明秋. MgB2各向异性光学性质的第一性原理研究. 物理学报, 2008, 57(9): 5838-5843. doi: 10.7498/aps.57.5838
    [13] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [14] 黄仙山, 羊亚平. 各向异性光子晶体中Λ型原子动力学性质研究. 物理学报, 2005, 54(9): 4129-4135. doi: 10.7498/aps.54.4129
    [15] 刘 斌, 梁 颖, 冯世平. 掺杂各向异性三角晶格系统的自旋动力学. 物理学报, 2004, 53(10): 3540-3544. doi: 10.7498/aps.53.3540
    [16] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
    [17] 李子荣, 孟庆安, 曹琪娟, 孙克, 魏玉年. Fe4N合金的各向异性超精细相互作用. 物理学报, 1996, 45(2): 314-317. doi: 10.7498/aps.45.314
    [18] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [19] 陈笃行. 金属玻璃应变感生磁各向异性动力学研究. 物理学报, 1984, 33(9): 1332-1336. doi: 10.7498/aps.33.1332
    [20] 李士, 邵涵如, 罗河烈, 凌启芬, 孙克. 超细颗粒γ-Fe2O3微粉包钴前后的各向异性. 物理学报, 1982, 31(9): 1250-1255. doi: 10.7498/aps.31.1250
计量
  • 文章访问数:  1290
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-10-17
  • 上网日期:  2023-11-01
  • 刊出日期:  2023-11-05

/

返回文章
返回