搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器

姚晓岱 吴爽 赵锐 吴淼鑫 刘航 金光勇 于永吉

引用本文:
Citation:

基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器

姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉

3.4 μm mid-infrared pulse train laser based on stepped acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator

Yao Xiao-Dai, Wu Shuang, Zhao Rui, Wu Miao-Xin, Liu Hang, Jin Guang-Yong, Yu Yong-Ji
PDF
HTML
导出引用
  • 本文报道了一种台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 建立了基频台阶声光调Q理论模型, 模拟了不同台阶调Q间隔时光子数密度随时间变化趋势, 获得了台阶信号最优触发时间, 确定了台阶声光调Q获得脉冲串激光输出的可能性. 根据理论模拟设计台阶信号触发时间, 并应用于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的中红外脉冲串激光器实验中, 在每个重复周期内声光Q开关分三次开启, 获得了单脉冲包络含三个子脉冲的3.4 μm中红外脉冲串激光输出. 脉冲包络内子脉冲间隔为5 μs, 最窄脉宽为12.8 ns, 脉冲包络重频为20 kHz, 理论和是实验中均发现脉冲包络内子脉冲宽度逐渐增大. 在最大平均输出功率为1.08 W时, 1064 nm基频光与3.4 μm参量光的光-光转换效率为10.05%, 光束质量因子M 2为2.01.
    3.4 μm mid-infrared pulse train laser generates the characteristic spectral lines of absorption peaks of CH4, NO2 and other molecules. Its pulse train working mode can increase the signal-to-noise ratio of laser detection echo signal. It has broad application prospects in radar detection, environmental monitoring, spectral analysis and other fields, which has aroused great interest of scientists. Compared with the traditional intra-cavity control method, the step Q-switching method has the advantages of simple structure, high energy utilization rate and accurate control. Therefore, in this paper, both the theoretical study and the experimental study of a 3.4 μm mid-infrared pulse train laser pumped by a step-type acousto-optic Q-switched external cavity in MgO:PPLN optical parametric oscillator are carried out. The theoretical model of fundamental frequency step acousto-optic Q-switching is established. The change trends of photon number density at different step intervals are simulated. The optimal trigger time of step signal required for step acousto-optic Q-switching is obtained. The possibility of obtaining pulse train laser output by step acousto-optic Q-switching is determined. In the simulation, the single pulse envelope contains 3 sub-pulse train waveforms. The pulse width of the sub-pulse in the pulse envelope gradually increases, the sub-pulse interval is 5 μs, and the pulse envelope repetition frequency is 20 kHz. At the same time, the optimal trigger times for the step signal are obtained to be 16.00, 21.00, 26.00, 50.00 μs. The mid-infrared pulse train laser experiment of step acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator is carried out, and the 3.4 μm mid-infrared pulse train laser output containing three sub-pulses in a single pulse envelope is obtained. The sub-pulse interval is 5 μs, the narrowest pulse width is 12.8 ns, and the pulse envelope repetition frequency is 20 kHz, when the maximum average output power is 1.08 W, the maximum optical-to-optical conversion efficiency of 1064 nm fundamental light and 3.4 μm parametric light is 10.05%, and the beam quality factor $M^2$ is 2.01. The output position of the sub pulses in each repetition period in the experiment is basically consistent with the simulation result, and it is found in both simulation and experiment that the width of the sub pulses within each pulse envelope gradually increases. The experimental results show that 3.4 μm mid-infrared pulse train laser output can be obtained by using step AOQS combined with OPO. This innovative method provides theoretical and technical support for detecting atmospheric pollutant concentration by using mid-infrared pulse train laser.
      通信作者: 于永吉, yuyongji@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U20A20214, 62275031, 11974060)、重庆市自然科学基金(批准号: CSTB2022NSCQ-MSX1027)和吉林省自然科学基金(批准号: 20210101154JC)资助的课题.
      Corresponding author: Yu Yong-Ji, yuyongji@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U20A20214, 62275031, 11974060), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSCQ-MSX1027), and the Natural Science Foundation of Jilin Province, China (Grant No. 20210101154JC).
    [1]

    Muraviev A, Smolski V, Loparo Z, Vodopyanov K 2018 Nat. Photonics 12 209Google Scholar

    [2]

    Vodopyanov K L 2020 Laser-based Mid-infrared Sources and Applications (Hoboken: John Wiley & Sons) pp1–5

    [3]

    Zhao Z M, Wu B, Wang X S, Pan Z H, Liu Z J, Zhang P Q, Shen X, Nie Q H, Dai S X, Wang R P 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [4]

    Koroglu B, Neupane S, Pryor O, Peale R E, Vasu S S 2018 J. Quantum Spectrosc. Radiat. Transfer 206 36Google Scholar

    [5]

    Walsh B M, Lee H R, Barnes N P 2016 J. Lumin. 169 400Google Scholar

    [6]

    Ma H L, Sun M G, Zhan S B, Zhang Q L, Zha S L, Wang G S, Liu K, Yi M F, Cao Z S 2020 Spectrochim. Acta, Part A 226 117605Google Scholar

    [7]

    Petrov K, Waltman S, Dlugokencky E, Arbore M, Fejer M, Tittel F, Hollberg L W 1997 Appl. Phys. B 64 567Google Scholar

    [8]

    Nikodem M, Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 21843Google Scholar

    [9]

    Veerabuthiran S, Razdan A K, Jindal M K, Sharma R K, Sagar V 2015 Opt. Laser Technol. 73 1

    [10]

    Refaat T F, Singh U N, Petros M, Remus R, Yu J 2015 Appl. Opt. 54 7240Google Scholar

    [11]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [12]

    Shayeganrad G 2018 Opt. Laser Eng. 111 80Google Scholar

    [13]

    Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E, Ismail S, Vay S, Kavaya M J 2004 Appl. Opt. 43 5092Google Scholar

    [14]

    Li X L, Luo P 2019 IEEE Sens. J. 19 6270Google Scholar

    [15]

    Elkhazraji A, Shakfa M K, Abualsaud N, Mhanna M, Sy M, Marangoni M, Farooq A 2023 Appl. Opt. 62 A46Google Scholar

    [16]

    Seddon A B 2013 Phys. Status Solidi B 250 1020Google Scholar

    [17]

    Gong Y, Bu L B, Yang B, Mustafa F 2020 Sensors 20 2211Google Scholar

    [18]

    Pan R C, Retzer U, Werblinski T, Slipchenko M N, Meyer T R, Zigan L, Will S 2018 Opt. Lett. 43 1191Google Scholar

    [19]

    Thurow B, Jiang N B, Samimy M, Lempert W 2004 Appl. Opt. 43 5064Google Scholar

    [20]

    Wu W T, Li X D, Yan R P, Zhou Y P, Ma Y F, Fan R W, Dong Z W, Chen D Y 2017 Opt. Express 25 26875Google Scholar

    [21]

    Li X D, Xu H B, Yan R P, Jiang Y G, Fan R W, Dong Z W, Chen D Y 2021 Optik 228 165789Google Scholar

    [22]

    Slipchenko M N, Miller J D, Roy S, Gord J R, Danczyk S A, Meyer T R 2012 Opt. Lett. 37 1346Google Scholar

    [23]

    Mao J, Wang C, Hong T X, Yu Y J 2021 Chin. Opt. Lett. 19 071404Google Scholar

    [24]

    Degnan J J 1989 IEEE J. Quantum Electron. 25 214Google Scholar

    [25]

    Pinnow D 1970 IEEE J. Quantum Electronics 6 223Google Scholar

    [26]

    Tucker A, Birnbaum M, Fincher C, Erler J 1977 J. Appl. Phys. 48 4907Google Scholar

    [27]

    Sun D H, Zhang Y W, Wang D Z, Wei S, Liu X Y, Pang J B, Geng D Q, Sang Y H, Liu H 2020 Light: Sci. Appl. 9 197

    [28]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

  • 图 1  光子数密度在不同台阶间隔下的变化趋势

    Fig. 1.  Change trend of photon number density under different step spacings

    图 2  反转粒子数密度、光子数密度随时间变化情况 (a) 反转粒子数密度随时间变化; (b) 光子数密度随时间变化; (c) 第一个周期内反转粒子数密度随时间变化; (d) 第一个周期内光子数密度随时间变化; (e) t3t4时反转粒子数密度随时间变化; (f) t3t4时光子数密度随时间变化

    Fig. 2.  Inversion population density and photon density change with time: (a) Inversion population density changing over time; (b) photon number density changing over time; (c) number density of inversion particles changes with time in the first period; (d) photon number density changes with time during the first cycle; (e) number density of inversion particles changes with time at t3t4; (f) number density of photons changes with time at t3t4.

    图 3  3.4 μm中红外脉冲串激光器实验装置示意图

    Fig. 3.  Schematic of 3.4 μm mid-infrared pulse-train laser experimental setup.

    图 4  基频脉冲串输出波形图及子脉冲脉宽

    Fig. 4.  Output waveform of fundamental frequency pulse train and pulse width of sub-pulse.

    图 5  射频信号及三子脉冲输出波形实验与理论对比

    Fig. 5.  Experimental and theoretical comparison of RF signal and triple-pulse output waveforms.

    图 6  中红外脉冲串输出光谱图

    Fig. 6.  Mid-infrared pulse train output spectrum.

    图 7  3.4 μm脉冲串输出波形及子脉冲宽度

    Fig. 7.  3.4 μm pulse train output waveform and sub-pulse width.

    图 8  3.4 μm脉冲串平均输出功率、转换效率随泵浦功率的变化

    Fig. 8.  Changes in average output power and conversion efficiency of 3.4 μm pulse train with pump power.

    表 1  台阶AOQS速率方程模拟主要参数

    Table 1.  Simulating key parameters of step AOQS equation.

    参数 取值
    声光晶体品质因数Qac/(s3·g–1) 1.51×1015 [25]
    换能器长宽之比K 12.5
    Nd:YVO4上能级寿命τ/μs 90
    四能级系统反转因子γ 1
    光速c/(m·s–1) 3×108
    晶体受激发射截面σ/cm2 12×10–19 [26]
    Nd:YVO4晶体长度l/mm 10
    激光谐振腔长度Llaser/mm 70
    泵浦速率Rp/(m3·s–1) 2.1×1026
    重复频率f/kHz 20
    输出镜对1064 nm反射率Ra 50%
    下载: 导出CSV

    表 2  镜片M1, M2, M3, M4镀膜情况

    Table 2.  Coating status of lenses M1, M2, M3, and M4.

    光学元件 材质 膜系参数
    M1 K9 HT@808 nm, HR@1064 nm
    M2 K9 HR@808 nm,
    T = 50%@1064 nm
    M3 CaF2 HR@1.4—1.85 μm,
    HR@2.6—4.3 μm,
    HT@1060—1095 nm
    M4 CaF2 HR@1064 nm,
    HR@1.4—1.7 μm,
    HT@3.1—4.2 μm
    下载: 导出CSV
  • [1]

    Muraviev A, Smolski V, Loparo Z, Vodopyanov K 2018 Nat. Photonics 12 209Google Scholar

    [2]

    Vodopyanov K L 2020 Laser-based Mid-infrared Sources and Applications (Hoboken: John Wiley & Sons) pp1–5

    [3]

    Zhao Z M, Wu B, Wang X S, Pan Z H, Liu Z J, Zhang P Q, Shen X, Nie Q H, Dai S X, Wang R P 2017 Laser Photonics Rev. 11 1700005Google Scholar

    [4]

    Koroglu B, Neupane S, Pryor O, Peale R E, Vasu S S 2018 J. Quantum Spectrosc. Radiat. Transfer 206 36Google Scholar

    [5]

    Walsh B M, Lee H R, Barnes N P 2016 J. Lumin. 169 400Google Scholar

    [6]

    Ma H L, Sun M G, Zhan S B, Zhang Q L, Zha S L, Wang G S, Liu K, Yi M F, Cao Z S 2020 Spectrochim. Acta, Part A 226 117605Google Scholar

    [7]

    Petrov K, Waltman S, Dlugokencky E, Arbore M, Fejer M, Tittel F, Hollberg L W 1997 Appl. Phys. B 64 567Google Scholar

    [8]

    Nikodem M, Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 21843Google Scholar

    [9]

    Veerabuthiran S, Razdan A K, Jindal M K, Sharma R K, Sagar V 2015 Opt. Laser Technol. 73 1

    [10]

    Refaat T F, Singh U N, Petros M, Remus R, Yu J 2015 Appl. Opt. 54 7240Google Scholar

    [11]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [12]

    Shayeganrad G 2018 Opt. Laser Eng. 111 80Google Scholar

    [13]

    Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E, Ismail S, Vay S, Kavaya M J 2004 Appl. Opt. 43 5092Google Scholar

    [14]

    Li X L, Luo P 2019 IEEE Sens. J. 19 6270Google Scholar

    [15]

    Elkhazraji A, Shakfa M K, Abualsaud N, Mhanna M, Sy M, Marangoni M, Farooq A 2023 Appl. Opt. 62 A46Google Scholar

    [16]

    Seddon A B 2013 Phys. Status Solidi B 250 1020Google Scholar

    [17]

    Gong Y, Bu L B, Yang B, Mustafa F 2020 Sensors 20 2211Google Scholar

    [18]

    Pan R C, Retzer U, Werblinski T, Slipchenko M N, Meyer T R, Zigan L, Will S 2018 Opt. Lett. 43 1191Google Scholar

    [19]

    Thurow B, Jiang N B, Samimy M, Lempert W 2004 Appl. Opt. 43 5064Google Scholar

    [20]

    Wu W T, Li X D, Yan R P, Zhou Y P, Ma Y F, Fan R W, Dong Z W, Chen D Y 2017 Opt. Express 25 26875Google Scholar

    [21]

    Li X D, Xu H B, Yan R P, Jiang Y G, Fan R W, Dong Z W, Chen D Y 2021 Optik 228 165789Google Scholar

    [22]

    Slipchenko M N, Miller J D, Roy S, Gord J R, Danczyk S A, Meyer T R 2012 Opt. Lett. 37 1346Google Scholar

    [23]

    Mao J, Wang C, Hong T X, Yu Y J 2021 Chin. Opt. Lett. 19 071404Google Scholar

    [24]

    Degnan J J 1989 IEEE J. Quantum Electron. 25 214Google Scholar

    [25]

    Pinnow D 1970 IEEE J. Quantum Electronics 6 223Google Scholar

    [26]

    Tucker A, Birnbaum M, Fincher C, Erler J 1977 J. Appl. Phys. 48 4907Google Scholar

    [27]

    Sun D H, Zhang Y W, Wang D Z, Wei S, Liu X Y, Pang J B, Geng D Q, Sang Y H, Liu H 2020 Light: Sci. Appl. 9 197

    [28]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

  • [1] 王滔宁, 姜玲玲, 程庭清, 王礼, 江海河. 2.94 μm LiNbO3声光调Q Er:YAG激光输出脉冲特性. 物理学报, 2024, 73(4): 044205. doi: 10.7498/aps.73.20231616
    [2] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [3] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, 2023, 72(22): 224205. doi: 10.7498/aps.72.20230903
    [4] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [5] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [6] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [8] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [9] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [10] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [11] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [12] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [13] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [14] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [15] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究. 物理学报, 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [16] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [18] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, 2008, 57(6): 3525-3530. doi: 10.7498/aps.57.3525
    [19] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [20] 杨 林, 黄维玲, 丘军林, 冯宝华, 张治国, Volker Gaebler, Baining Liu, Hans J.Eichler. Cr4+:YAG被动调Q激光器中受激粒子上转换效应对脉冲的影响研究. 物理学报, 2003, 52(10): 2471-2475. doi: 10.7498/aps.52.2471
计量
  • 文章访问数:  706
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-10-19
  • 上网日期:  2023-11-17
  • 刊出日期:  2024-02-20

/

返回文章
返回