搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响

许思维 王训四 沈祥

引用本文:
Citation:

元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响

许思维, 王训四, 沈祥

Effect of elemental substitution on transition threshold behaviours of Ge-As(Sb)-Se glasses

Xu Si-Wei, Wang Xun-Si, Shen Xiang
PDF
HTML
导出引用
  • 本文针对Sb取代As元素对GexAs(Sb)20Se80–x玻璃阈值行为的影响进行研究. 对理想共价网络玻璃GexAs20Se80–x的玻璃转变温度、密度和折射率等物理参数进行了系统测量, 在其平均配位数为2.4和2.67处验证了转变阈值的存在, 这两个转变分别代表玻璃内部的共价网络结构从欠限制的松散状态到过限制的紧致状态的转变和从二维到三维紧致状态的转变. 但是, 当金属性更强的Sb取代As时, 得到的非理想共价网络玻璃GexSb20Se80–x则会引起转变阈值的变化, 转变阈值改变为化学计量组成. 进一步利用拉曼散射技术对其结构进行表征, 并将拉曼光谱通过分峰拟合分解成不同的结构单元的特征峰, 它们各自的强度变化表现出相同的行为, 这归因于As和Sb的原子半径差异较大所引起的化学效应以及Sb元素具有较强的离子特性.
    In this paper, We prepare two groups of glasses: one is GexAs20Se80–x with x ranging from 5% to 32.5%, the other is GexSb20Se80–x with x spanning from 5% to 25%, by using the conventional melt-quench method, and investigate the effect of the elemental substitution of Sb for As on the threshold behaviors in GexAs(Sb)20Se80–x glasses. We are to understand to what extent the topological model and chemical order model can explain the correlation between physical properties and glass compositions, and how the chemical composition can affect the glass transition threshold. Glass transition temperature is measured by the differential scanning calorimeter (Mettler-Toledo, DSC1) with different scanning rates ranging from 5 K/min to 30 K/min under a uniform nitrogen gas flow of 50 mL/min, the glass density is measured by a Mettler H20 balance with a MgO crystal used as a reference. Samples of each glass composition are weighed five times and the average density is recorded. The refractive index of the glass at 1.5 um is measured by a Metricon Model 2010 prism coupler. Raman spectra are measured by a T64000 Jobin-Yvon-Horiba micro-Raman spectrometer equipped with a liquid-nitrogen-cooled CCD detector. The 830 nm laser line is used as an excitation source, and the laser power is kept as small as possible to avoid any photo-induced effects. The resolution of the spectrometer is about 0.5 cm–1. The systematic measurements of these physical parameters show that while the transition thresholds at MCN = 2.4 and 2.67 are verified in the Ge-As-Se glasses with ideal covalent network, these two transitions represent the covalent network structure inside the glass from an under-constrained “floppy” network to an over-constrained “rigid” phase and from the two-dimensional to the three-dimensional “stressed rigid” phase respectively. However, when As is substituted by Sb, the the resulting GexSb20Se80–x glass with non-ideal covalent network will change its transition threshold, changing into the chemically stoichiometric composition. We further deconvolve Raman scattering spectra into different structural units and the change of their respective intensity shows the same behavior, which is ascribed to the chemical effect induced by a large difference in atomic radius between As and Sb, and a relatively strong ionic feature of element Sb.
      通信作者: 许思维, xusiwei1227@163.com
    • 基金项目: 国家自然科学基金(批准号: 62004067)和湖南省自然科学基金(批准号: 2023JJ30438)资助的课题.
      Corresponding author: Xu Si-Wei, xusiwei1227@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62004067) and the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ30438).
    [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp101–128

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp110–121

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [5]

    许思维, 王训四, 沈祥 2023 物理学报 72 017101Google Scholar

    Xu S W, Wang X S, Shen X 2023 Acta Phys. Sin. 72 017101Google Scholar

    [6]

    Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar

    [7]

    Tronc P, Bensoussan M, Brenac A, Sebenne C 1973 Phys. Rev. B 8 5947Google Scholar

    [8]

    Lucovsky G, Galeener F L, Keezer R C, Geils R H, Six H A 1974 Phys. Rev. B 10 5134Google Scholar

    [9]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [10]

    Philips J C 1981 J. Non-Cryst. Solids 43 37Google Scholar

    [11]

    Tanaka K 1989 Phys. Rev. B 39 1270Google Scholar

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615Google Scholar

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575Google Scholar

    [14]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [15]

    Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [16]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [17]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571Google Scholar

    [18]

    Georgiev D G, Boolchand P, Micoulaut M 2000 Phys. Rev. B 62 R9228Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Xu S W, Liang T W, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [21]

    Stevens M, Boolchand P, Hernandez J G 1985 Phys. Rev. B 31 981Google Scholar

    [22]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2015 Appl. Phys. Express 8 015504Google Scholar

    [23]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [24]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [25]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827Google Scholar

    [26]

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302 [许思维, 王丽, 沈祥 2015 物理学报 64 223302]Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [27]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [28]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [29]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702Google Scholar

    [30]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205Google Scholar

    [31]

    Saffarini G 1994 Solid State Commun. 91 577Google Scholar

    [32]

    Giridhar A, Narasimham P S L, Mahadevan S 1981 J. Non-Cryst. Solids 43 29Google Scholar

    [33]

    Opletal G, Drumm D W, Petersen T C, Wang R P, Russo S P 2015 J. Phys. Chem. A 119 6421Google Scholar

  • 图 1  玻璃转变温度随平均配位数和Ge原子含量的变化趋势

    Fig. 1.  Glass transition temperature as a function of MCN and Ge concentration.

    图 2  玻璃密度随平均配位数和Ge原子含量的变化趋势

    Fig. 2.  Density of the glass as a function of MCN and Ge concentration.

    图 3  玻璃折射率随平均配位数和Ge原子含量的变化趋势

    Fig. 3.  Refractive index of the glass as a function of MCN and Ge concentration.

    图 4  GexAs20Se80–x(a)和GexSb20Se80–x(b)玻璃的拉曼散射光谱及其分峰拟合

    Fig. 4.  Raman scattering spectra of GexAs10Se90-x (a) and GexSb10Se90-x (b) glasses and their decompositions.

    图 5  GexAs20Se80–x (a)和GexSb20Se80–x (b)玻璃中各个结构单元的相对比例随平均配位数和Ge原子含量的变化趋势

    Fig. 5.  The content of different structural units as a function of MCN and Ge concentration in GexAs20Se80–x (a) and GexSb20Se80–x (b) glasses.

  • [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp101–128

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp110–121

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥 2021 物理学报 70 167101Google Scholar

    Xu S W, Yang X N, Yang D X, Wang X S, Shen X 2021 Acta Phys. Sin. 70 167101Google Scholar

    [5]

    许思维, 王训四, 沈祥 2023 物理学报 72 017101Google Scholar

    Xu S W, Wang X S, Shen X 2023 Acta Phys. Sin. 72 017101Google Scholar

    [6]

    Yang A P, Sun M Y, Ren H, Lin H X, Feng X, Yang Z Y 2021 J. Lumin. 237 118169Google Scholar

    [7]

    Tronc P, Bensoussan M, Brenac A, Sebenne C 1973 Phys. Rev. B 8 5947Google Scholar

    [8]

    Lucovsky G, Galeener F L, Keezer R C, Geils R H, Six H A 1974 Phys. Rev. B 10 5134Google Scholar

    [9]

    Philipps J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [10]

    Philips J C 1981 J. Non-Cryst. Solids 43 37Google Scholar

    [11]

    Tanaka K 1989 Phys. Rev. B 39 1270Google Scholar

    [12]

    Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J, Luther-Davies B 2009 Appl. Phys. A 96 615Google Scholar

    [13]

    Su X Q, Wang R P, Luther-Davies B, Wang L 2013 Appl. Phys. A 113 575Google Scholar

    [14]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [15]

    Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [16]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [17]

    Wei W H, Wang R P, Shen X, Fang L, Luther-Davies B 2013 J. Phys. Chem. C 117 16571Google Scholar

    [18]

    Georgiev D G, Boolchand P, Micoulaut M 2000 Phys. Rev. B 62 R9228Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Xu S W, Liang T W, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [21]

    Stevens M, Boolchand P, Hernandez J G 1985 Phys. Rev. B 31 981Google Scholar

    [22]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2015 Appl. Phys. Express 8 015504Google Scholar

    [23]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [24]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [25]

    Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827Google Scholar

    [26]

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302 [许思维, 王丽, 沈祥 2015 物理学报 64 223302]Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [27]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [28]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [29]

    Wang Y, Matsuda O, Inoue K, Yamamuro O, Matsuo T, Murase K 1998 J. Non-Cryst. Solids 232 702Google Scholar

    [30]

    Bhosle S, Gunasekera K, Boolchand P, Micoulaut M 2012 Int. J. Appl. Glass. Sci. 3 205Google Scholar

    [31]

    Saffarini G 1994 Solid State Commun. 91 577Google Scholar

    [32]

    Giridhar A, Narasimham P S L, Mahadevan S 1981 J. Non-Cryst. Solids 43 29Google Scholar

    [33]

    Opletal G, Drumm D W, Petersen T C, Wang R P, Russo S P 2015 J. Phys. Chem. A 119 6421Google Scholar

  • [1] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究. 物理学报, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [4] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [5] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [6] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [7] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [8] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [9] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [10] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 杨志清, 王飞利, 林常规. 20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究. 物理学报, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [13] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [14] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [15] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [16] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [17] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [18] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [19] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [20] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
计量
  • 文章访问数:  734
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2023-11-27
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回