搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计入粗糙峰的微纳结构表面水润滑流体动力学仿真研究

谷靖萱 郑庭 郭明帅 夏冬生 张会臣

引用本文:
Citation:

计入粗糙峰的微纳结构表面水润滑流体动力学仿真研究

谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣

Fluid dynamics simulation on the water lubricating performance of surface micro-/nano-textured surfaces considering roughness structures

GU Jing-Xuan, ZHENG Ting, Guo Ming-Shuai, Xia Dong-Sheng, ZHANG Hui-Chen
PDF
导出引用
  • 随着表面精密加工技术与润滑减摩研究的发展,利用表面织构化技术提升其表面减摩效果的研究已引起广泛关注,但少有研究考虑摩擦副表面粗糙形貌对润滑特性带来影响。本研究采用计算流体动力学(CFD)模拟方法,建立了矩形织构模型,并在其表面计入粗糙峰结构,讨论水润滑条件下不同粗糙峰结构模型润滑特性变化规律。结果表明:调节微纳复合表面结构参数,将改变润滑水膜承载力,进而影响微纳复合结构表面的动压润滑效果。此外,织构内涡流生成导致涡量变化,引起能量耗散并影响摩擦力。对矩形织构模型,适当的深度比(H=0.6)可使其表面动压润滑效应达到最优;而增加织构宽度比(W),动压润滑效应增强。在微织构表面引入高斯随机粗糙峰后,当随机粗糙峰高度变化标准差δ为0.5时,承载力可提升44%,摩擦系数降低30.9%。若引入半正弦粗糙峰,承载力和摩擦系数的变化范围均小于10%,对润滑效果的影响不明显。若同时引入高斯随机粗糙峰和半正弦粗糙峰,承载力可提升42%,摩擦系数下降31.1%,即表面动压润滑效果提升也较为显著。
    With the development of surface precision machining technology and numerous studies on lubrication and friction reduction, the application of surface textures to achieve friction reduction has attracted extensive attention, but few studies have considered the influence of surface roughness on lubrication characteristics. By employing the computational fluid dynamics (CFD) simulation method, the lubrication models with rectangular textures and the introduction of rough asperity structures at the same time were established. The effects of the corresponding structure parameters on the lubrication performance of textured and roughed surfaces were studied under water lubrication conditions. Our results suggest that the adjustment of geometric parameters on the micro-/nano-structured surfaces could influence the bearing capacity of the water lubrication film, thus affecting the hydrodynamic lubrication performance on the surface. In addition, the generation of vortex in the micro-textures could bring changes in vorticity, which causes energy dissipation and affects frictional forces. In the lubrication model with rectangular textures, optimal hydrodynamic lubrication performance was obtained under the appropriate depth ratio at H=0.6. Meanwhile, the corresponding lubrication performance could be enhanced by increasing the width ratio (W) of surface textures. After introducing random asperity structures on the micro-textured surfaces with a standard deviation value of δ=0.5, the carrying capacity increased by 44%, and the friction coefficient decreased by 30.9%. Moreover, the introduction of half-sine rough asperity structures could only result in relatively minor differences in the lubrication performance, i.e., the changes in the bearing capacity and friction coefficient are less than 10%. However, the introduction of compound hierarchical structures consisting of random asperity structures and half-sine rough asperity structures could result in an increase in the corresponding bearing capacity by 42% and a reduction in friction coefficient (31.1%), which implies a significant enhancement in the hydrodynamic lubrication performance.
  • [1]

    Hamilton D B, Walowit J A, Allen C M 1966 J. Fluids Eng. 88 177.

    [2]

    Zhong Y, Zheng L, Gao Y, Liu Z 2019 Tribol. Int. 129 151.

    [3]

    Mourier L, Mazuyer D, Ninove F P, Lubrecht A A 2010 Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol. 224 697.

    [4]

    Zhang J, Meng Y 2012 Tribol. Lett. 46 147.

    [5]

    Gropper D, Wang L, Harvey T J 2016 Tribol. Int. 94 509.

    [6]

    Braun D, Greiner C, Schneider J, Gumbsch P 2014 Tribol. Int. 77 142.

    [7]

    Hsu S M, Jing Y, Hua D, Zhang H 2014 J. Phys. D:Appl. Phys. 47 335307.

    [8]

    An S D, Wang X Y, Chen X, Wang Y W, Wang X B, Zhao Y Q 2015 Acta Phys. Sin. 64 166801(in Chinese)[安书董,王晓燕,陈仙,王炎武,王晓波,赵玉清, 物理学报 2015 64 036801]

    [9]

    Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F 2016 Tribol. Int. 95 290.

    [10]

    Ji J H, Guan C W, Fu H, Hua X J, Fu Y H 2018 Lubr. Eng. 43 20(in Chinese)[纪敬虎,管采薇,符昊,华希俊,符永宏, 润滑与密封 2018, 43 20]

    [11]

    Qiu Y, Khonsari M M 2011 J. Tribol. 133 021704.

    [12]

    Lahayne O, Pichler B, Reihsner R, Eberhardsteiner J, Suh J, Kim D, Nam S, Paek H, Lorenz B, Persson B N J 2016 Tribol. Lett. 62 17.

    [13]

    Feng D, Shen M xue, Peng X dong, Meng X kai 2017 Tribol. Lett. 65 1.

    [14]

    Sedlaček M, Podgornik B, Vižintin J 2009 Wear 266 482.

    [15]

    Menezes P L, Kishore, Kailas S V., Lovell M R 2011 Tribol. Lett. 41 1.

    [16]

    Rasp W, Wichern C M 2002 J. Mater. Process. Technol. 125 379.

    [17]

    Wang Y, Liu Y, Huang W, Guo F, Wang Y 2016 Tribology 36 520.

    [18]

    Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D 2019 Tribol. Int. 134 190.

    [19]

    Brajdic-Mitidieri P, Gosman A D, Ioannides E, Spikes H A 2005 J. Tribol. 127 803.

    [20]

    Sahlin F, Glavatskih S B, Almqvist T, Larsson R 2005 J. Tribol. 127 96.

    [21]

    Vilhena L, Sedlaček M, Podgornik B, Rek Z,Žun I 2018 Lubricants 6 15.

    [22]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220.

    [23]

    Lu X M, Wang Q D, Xiao J M, Yang Z C 2016 Lubr. Eng. 41 70(in Chinese)[禄晓敏,王权岱,肖继明,杨振朝, 润滑与密封 2016 41 70]

    [24]

    Mao Y, Zeng L, Lu Y 2016 Tribol. Int. 104 212.

    [25]

    Ma X 2023 Lubricants 11 270.

    [26]

    Li Q, Zhang S, Wang Y, Xu W W, Wang Z 2019 Ind. Lubr. Tribol. 71 109.

    [27]

    He T, Li J, Deng H, Wang C, Shi R, Chen G, Li Z 2021 AIP Adv. 11 015222.

    [28]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617.

    [29]

    Pellone C, Franc J P, Perrin M 2004 C.R. Math. 332 827.

    [30]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617.

    [31]

    Buscaglia G C, El Alaoui Talibi M, Jai M 2015 Math. Comput. Simul 118 130.

    [32]

    Wei Y, Tomkowski R, Archenti A 2020 Metals 10 361.

    [33]

    Wang W, He Y, Li Y, Wei B, Hu Y, Luo J 2018 Ind. Lubr. Tribol. 70 754.

    [34]

    Podgornik B, Vilhena L M, Sedlaček M, Rek Z,Žun I 2012 Meccanica 47 1613.

    [35]

    Gao G, Yin Z, Jiang D, Zhang X 2014 Tribol. Int. 75 31.

    [36]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93.

    [37]

    Sahlin F, Almqvist A, Larsson R, Glavatskih S 2007 Tribol. Int. 40 1294.

    [38]

    Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia G C 2007 J. Tribol. 129 868.

    [39]

    Wahl R, Schneider J, Gumbsch P 2012 Tribol. Int. 55 81.

    [40]

    Liu T X, Li J, Lu X, Jiang Z B 2023 Lubr. Eng. 48 74(in Chinese)[刘天霞,李靖,卢星,江志波, 润滑与密封 2023 48 74]

    [41]

    Babu P V, Ismail S, Ben B S 2021 Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol. 235 360.

    [42]

    Wos S, Koszela W, Pawlus P 2020 Tribol. Int. 146 106205.

    [43]

    Wang J, Yan Z, Fang X, Shen Z, Pan X 2020 Lubr. Sci. 32 404.

    [44]

    Venkateswara Babu P, Syed I, Benbeera S 2020 Mater. Today Proc. 24 1112.

    [45]

    Fan Z M, Ma R L, Jiang F 2021 Lubr. Eng. 46 44(in Chinese)[樊智敏,马瑞磷,江峰, 润滑与密封 2021 46 44]

    [46]

    Ji J H, Zhou J P, Wang M Y, Wang W, Fu Y H 2019 Surf. Technol. 48 139(in Chinese)[纪敬虎,周加鹏,王沫阳,王伟,符永宏, 表面技术 2019 48 139]

    [47]

    Jiang Y, Yan Z, Zhang S, Shen Z, Sun H 2022 Sci. Rep. 12 13455.

    [48]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220.

    [49]

    Wang Y, Jacobs G, König F, Zhang S, von Goeldel S 2023 Lubricants 11 20.

    [50]

    Huang J, Guan Y, Ramakrishna S 2021 Tribol. Int. 162 107115.

  • [1] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, doi: 10.7498/aps.69.20191141
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, doi: 10.7498/aps.68.20191203
    [3] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟. 物理学报, doi: 10.7498/aps.68.20181774
    [4] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, doi: 10.7498/aps.68.20181956
    [5] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制. 物理学报, doi: 10.7498/aps.66.066101
    [6] 陈雷鸣. 干活性物质的动力学理论. 物理学报, doi: 10.7498/aps.65.186401
    [7] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, doi: 10.7498/aps.64.024101
    [8] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, doi: 10.7498/aps.63.144701
    [9] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.214706
    [10] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, doi: 10.7498/aps.62.154701
    [11] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, doi: 10.7498/aps.62.204501
    [12] 杜萌, 金宁德, 高忠科, 朱雷, 王振亚. 油水两相流水包油流型多尺度排列熵分析. 物理学报, doi: 10.7498/aps.61.230507
    [13] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, doi: 10.7498/aps.61.120510
    [14] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, doi: 10.7498/aps.58.2518
    [15] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响. 物理学报, doi: 10.7498/aps.58.6436
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, doi: 10.7498/aps.58.7050
    [17] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, doi: 10.7498/aps.57.1759
    [18] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, doi: 10.7498/aps.56.4728
    [19] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, doi: 10.7498/aps.54.5389
    [20] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, doi: 10.7498/aps.50.994
计量
  • 文章访问数:  98
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-23

/

返回文章
返回