搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响

胡玉发 易仕和 刘小林 徐席旺 张震 张臻

引用本文:
Citation:

壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响

胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻

Effect of wall-seeping gas film under different working mediums on conical hypersonic boundary layer stability

Hu Yu-Fa, Yi Shi-He, Liu Xiao-Lin, Xu Xi-Wang, Zhang Zhen, Zhang Zhen
PDF
导出引用
  • 壁面渗透气膜是一种有应用前景的高超声速边界层转捩控制和减阻降热方式。在马赫数6高超声速静音风洞内,使用纳米粒子示踪的平面激光散射(nano-tracer planar laser scattering,NPLS)技术和高频脉动压力测试技术,研究了壁面渗透气膜工质(氦气、空气和二氧化碳)在相同体积流量条件下对圆锥高超声速边界层的影响。实验结果表明,壁面渗透气膜显著增厚了边界层,最厚位置都出现在渗透区域下游边界处,且氦气气膜时边界层最薄,二氧化碳气膜时最厚。通常,空气气膜和二氧化碳气膜使得边界层内提前出现规则的绳状交织的第二模态波结构,但体积流量较大条件下二氧化碳气膜时,扰动波结构类似剪切层不稳定性。氦气气膜时,扰动波结构不是第二模态波,其形状不规则,随时空变化较大,壁面脉动压力功率谱密度没有出现峰值频率。空气气膜时第二模态波波长大约是边界层厚度的2~3倍,而二氧化碳气膜时增大到3倍以上。二氧化碳气膜时第二模态波峰值频率最小,频带范围最窄,波长最长,幅值最大,扰动波传播距离较远且非线性相互作用较强。
    Wall-seeping gas film (WSGF) represents a promising method for transition control, drag reduction, and heat reduction in hypersonic vehicles. Experiments were conducted in a Mach 6 hypersonic quiet wind tunnel using nano-tracer planar laser scattering (NPLS) and high-frequency fluctuating pressure measuring techniques. This paper investigates the effects of wall-seeping helium, air, and carbon dioxide gas films under identical volume flow rate conditions on conical boundary layer thickness, disturbance wave structure, wavelength, frequency, amplitude, and nonlinear interaction. The experimental results reveal that WSGF significantly thickens the hypersonic boundary layer, with the thickest position appearing at the downstream boundary of the seeping zone. The boundary layer thickness is thinnest for helium gas film and thickest for carbon dioxide gas film. Generally, air gas film and carbon dioxide gas film induce the appearance of regular, rope-like, and interlaced second-mode waves in advance in the boundary layer. However, under a higher volume flow rate for carbon dioxide gas film, the disturbance wave structure resembles interface fluctuations, with a characteristic wavelength of approximately 18 mm and a peak frequency as low as about 35 kHz, without the rope-like interlaced characteristic. At this time, the influence of shear layer instability becomes significant. The disturbance waves do not exhibit second-mode wave characteristics for wall-seeping helium gas film, whose shape is irregular and undergoes deformation over time and space. Additionally, the power spectral density of wall fluctuating pressure exhibits insignificant variation with volume flow rate and flow direction, which is similar to the characteristics of power spectral density in the laminar boundary layer and has no peak frequency. The wavelength of second-mode waves is about 2~3 times the boundary layer thickness for air gas film while increasing to more than 3 times for carbon dioxide gas film. Compared to air gas film, the application of carbon dioxide gas film results in a smaller peak frequency and bandwidth of disturbance waves, larger characteristic wavelength and amplitude, longer propagation distance, and stronger nonlinear interaction. In the future, attention should be directed towards understanding disturbance wave characteristics in the boundary layer for helium gas film and shear layer instability under larger volume flow rates.
  • [1]

    Jackson T A, Eklund D R, Fink A J 2004 J. Mater. Sci. 39 5905

    [2]

    Meritt R J, Schetz J A, Marineau E C, Lewis D R, Daniel D T 2017 J. Spacecr. Rockets 54 871

    [3]

    Ifti H S, Hermann T, McGilvray M, Merrifield J 2022 J. Spacecr. Rockets 59 1726

    [4]

    Saikia B, Brehm C 2023 AIAA Aviation 2023 Forum San Diego, CA, June 12-16

    [5]

    Stalmach Jr. C J, Bertin J J, Pope T C, McCloskey M H 1971 NASA Contractor Report 1908

    [6]

    Ghaffari S, Marxen O, Iaccarino G, Shaqfeh E S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4-7

    [7]

    Pappas C C, Okuno A F 1964 NASA Technical Note D-2473

    [8]

    Liu X, Zhao R, Wen C, Yuan W 2024 Acta Mech. 235 1109

    [9]

    Starkenberg J, Cresci R J 1976 AIAA J. 14 461

    [10]

    Marvin J G, Akin C M 1970 AIAA J. 8 857

    [11]

    Bertin J J, McCloskey M H, Stalmach Jr. C J, Wright R L 1972 10th AIAA Aerospace Sciences Meeting San Diego, CA, January 17-19

    [12]

    Scott C J, Anderson G E 1958 J. Aerosp. Sci. 25 791

    [13]

    Schneider S P 2010 J. Spacecr. Rockets 47 225

    [14]

    Jewell J S, Leyva I A, Parziale N J, Shepherd J E 2011 28th International Symposium on Shock Waves Berlin, Heidelberg, July 17-22

    [15]

    Fujii K, Hornung H G 2003 AIAA J. 41 1282

    [16]

    Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567

    [17]

    Schmidt B E, Shepherd J E 2019 AIAA J. 57 5230

    [18]

    Camillo G P, Wagner A, Dittert C, Benjamin L, Wartemann V, Neumann J, Hink R 2020 Exp. Fluids 61 162

    [19]

    Kerth P, Wylie S, Ravichandran R, McGilvray M 2022 AIAA Aviation 2022 Forum Chicago, IL, June 27-July 1

    [20]

    Liu Y Q, Jiang P X, Jin S S, Sun J G 2010 Int. J. Heat Mass Transfer 53 5364

    [21]

    Ifti H S, Hermann T, McGilvray M 2023 AIAA J. 61 3541

    [22]

    Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280 (in Chinese) [李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280]

    [23]

    Beckwith I E 1975 AIAA J. 13 300

    [24]

    Yi S H, Liu X L, Niu H B, Lu X G, He L 2020 Acta Aerodynamica Sinica 38 137-142 (in Chinese) [易仕和, 刘小林, 牛海波, 陆小革, 何霖 2020 空气动力学学报 38 137]

    [25]

    Liu X L, Yi S H, Niu H B, He L 2020 Exp. Therm. Fluid Sci. 118 110143

    [26]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China, Ser. E: Technol. Sci. 52 3640

    [27]

    Gang D D, Yi S H, Mi Q, Lu X G 2022 Physics of Gases 7 33 (in Chinese) [冈敦殿, 易仕和, 米琦, 陆小革 2022 气体物理 7 33]

    [28]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China, Ser. G: Phys., Mech. Astron. 52 2001

    [29]

    Quan P G, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 物理学报 63 084703]

    [30]

    Xu X W, Yi S H, Zhang F, Zhang B, Liu X L 2021 AIAA J. 59 439

    [31]

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 何霖 2015 物理学报 64 064701]

    [32]

    Ding H L, Yi S H, Ouyang T C, Zhao Y X 2020 Meas. Sci. Technol. 31 085302

    [33]

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701 (in Chinese) [何霖, 易仕和, 陆小革 2017 物理学报 66 024701]

    [34]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [35]

    Ifti H S, Hermann T, McGilvray M, Larrimbe L, Hedgecock R, Vandeperre L 2022 AIAA J. 60 3286

    [36]

    Zhao X D, Liao Q D 1983 Viscous Fluid Dynamics (1st ed.) (Beijing: China Machine Press) (in Chinese) [赵学端, 廖其奠 1983 粘性流体力学 (第一版) (北京: 机械工业出版社

    [37]

    Chen J F, Xu Y, Xu X B, Zou Q F, Ling G, Zhang Y F 2022 Journal of Experiments in Fluid Mechanics 36 1-10 (in Chinese) [陈久芬, 徐洋, 许晓斌, 邹琼芬, 凌岗, 张毅锋 2022 实验流体力学 37 51]

    [38]

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701 (In Chinese) [刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701

    [39]

    Zhang B, Yi S H, Niu H B, Liu X L, Lu X G, He L 2023 Exp. Therm. Fluid Sci. 141 110786

    [40]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704

    [41]

    Kennedy R E, Laurence S J, Smith M S, Marineau E C 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9-13

    [42]

    Zhang C H, Lee C B 2017 J. Visualization 20 7

    [43]

    Schmidt B E, Bitter N P, Hornung H G, Shepherd J E 2016 AIAA J. 54 161

    [44]

    Mack L M 1984 AGARD Report 709, Part 3

    [45]

    Grossir G, Pinna F, Bonucci G, Regert T, Rambaud P, Chazot O 2014 7th AIAA Theoretical Fluid Mechanics Conference Atlanta, GA, June 16-20

    [46]

    Stetson K F, Kimmel R L 1992 30th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6-9

    [47]

    Pagella A, Rist U, Wagner S 2002 Phys. Fluids 14 2088

    [48]

    Hu Y F, Yi S H, Liu X L, Xu X W, Zhang B 2024 Aerosp. Sci. Technol. 146 108951

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层流动演化研究. 物理学报, doi: 10.7498/aps.73.20240128
    [2] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法研究. 物理学报, doi: 10.7498/aps.71.20212345
    [3] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, doi: 10.7498/aps.70.20212345
    [4] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, doi: 10.7498/aps.71.20220851
    [5] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, doi: 10.7498/aps.69.20200216
    [6] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, doi: 10.7498/aps.69.20200748
    [7] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, doi: 10.7498/aps.69.20191155
    [8] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, doi: 10.7498/aps.68.20190684
    [9] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, doi: 10.7498/aps.67.20181192
    [10] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, doi: 10.7498/aps.67.20180531
    [11] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, doi: 10.7498/aps.66.234701
    [12] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, doi: 10.7498/aps.66.244201
    [13] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, doi: 10.7498/aps.66.024701
    [14] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, doi: 10.7498/aps.64.224702
    [15] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, doi: 10.7498/aps.64.054706
    [16] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, doi: 10.7498/aps.64.014704
    [17] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, doi: 10.7498/aps.64.014703
    [18] 冈敦殿, 易仕和, 赵云飞. 超声速平板圆台突起物绕流实验和数值模拟研究. 物理学报, doi: 10.7498/aps.64.054705
    [19] 朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰. 基于NPLS的超声速后台阶流场精细结构及其非定常特性. 物理学报, doi: 10.7498/aps.63.134701
    [20] 蓝 可, 贺贤土, 赖东显, 李双贵. 柱输运管中扩散超声速辐射波的能流. 物理学报, doi: 10.7498/aps.55.3789
计量
  • 文章访问数:  112
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-24

/

返回文章
返回