搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究

郑鹏飞 柳志旭 王超 刘卫芳

引用本文:
Citation:

基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究

郑鹏飞, 柳志旭, 王超, 刘卫芳

Modulation of organic groups substitution on the polarization and piezoelectric properties of lead-free organic perovskite ferroelectrics via first principles study

Zheng Peng-Fei, Liu Zhi-Xu, Wang Chao, Liu Wei-Fang
PDF
导出引用
  • 随着可穿戴电子产品要求提升,无毒的有机钙钛矿铁电体成为潜在候选材料.本工作应用第一性原理计算系统研究了无铅有机钙钛矿A-NH4-(PF6)3(A=MDABCO, CNDABCO, ODABCO, NODABCO, SHDABCO)的电子态密度、自发极化、弹性特性和压电效应.通过分子动力学和结合能计算发现,有机钙钛矿在室温下具有稳定性且预测其在实验上易于合成.对电子态密度研究发现,A-NH4-(PF6)3的价带主要来自F元素的贡献,价带顶和导带底分别来自取代基团中的元素和N元素的贡献,因此有利于电子空穴对的分离.依据Born稳定性判据,有机钙钛矿具有稳定的机械性质.除此之外,A位有机阳离子的取代基团可以改变材料中氢键的数量,对总铁电极化的贡献有着明显影响.最后通过压电性能计算,揭示了有机钙钛矿具有良好的压电效果,该效应源于材料引入的有机阳离子增加的材料的柔性.计算结果为后续实验提供了理论基础.
    Organic ferroelectrics are desirable for the application in the field of wearable electronics due to their eco-friendly process-ability, mechanical flexibility, low processing temperatures, and lightweight. In this work, we used five organic groups as substitution for organic cation and studied the effects of organic cations on the structural stability, electronic structure, mechanical properties and spontaneous polarization of metal-free perovskite A-NH4-(PF6)3(A=MDABCO, CNDABCO, ODABCO, NODABCO, SHDABCO) through first-principles calculations. Firstly, the stability of the five materials was calculated by molecular dynamics simulations, and the energy of all systems is negative and stable after 500 fs, which demonstrated the stability of the five materials in 300 K. The electronic structure calculation shows that the organic perovskite materials have wide band gap with the value of about 7.05 eV. The VBM(Valence Band Maximum) and CBM (Conduction Band Minimum) are occupied by different elements, which is conductive to the separation of electrons and holes. We found that organic cations have an important contribution to the spontaneous polarization of materials, with the contributing over 50%. The presence of hydrogen atoms in the substituting groups (MDABCO, ODABCO) enhances the hydrogen bond interaction between the organic cations and PF6-and increases the displacement of the organic cation, resulting in an increase in the contribution of the polarization of the organic cation to the total polarization. In addition, we observed large piezoelectric strain components, the calculated d33 is 36.5 pC/N for CNDABCO-NH4-(PF6)3, 32.3pC/N for SHNDABCO-NH4-(PF6)3, which is larger than the known d33 of MDABCO-NH4-I3(14pC/N). The calculated d14 is 57.5 pC/N for ODABCO-NH4-(PF6)3, 27.5 pC/N for NODABCO-NH4-(PF6)3. These components are at a high level among known organic perovskite materials and comparable to many known inorganic crystals. The large value of d14 is found to be closely related with the large value of elastic compliance tensor s44. The analysis of Young’s modulus and bulk’s modulus found that these organic perovskite materials have good ductility. These results show that these organic materials are excellent candidates for future environmentally friendly piezoelectric materials.
  • [1]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712

    [2]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829

    [3]

    Bechmann R 2005 J. Acoust. Soc. Am. 28 347

    [4]

    Haertling G H 1999 J. Am. Cera. Soc. 82 797

    [5]

    Zhao Y X, Zhu K 2016 Chem. Soc. Rev. 45 655

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270

    [7]

    Peña M A, Fierro J 2001 Chem. Rev. 101 1981

    [8]

    Zheng L L, Qi S C, Wang C M, Shi L 2019 Acta Phys. Sin. 68 147701(in Chinese) [郑隆立,齐世超,王春明,石磊,2019 物理学报 68 147701]

    [9]

    NEATEN J B, EDERER C, WAGHMARE U V, SPALDIN N A, RABE K M 2005 Phys. Rev. B 71 14111

    [10]

    Lebeugle D, Colson D, Forget A, Viret M 2007 Appl. Phys. Lett. 91 22907

    [11]

    Palkar V R, Kundaliya D C, Malik S K 2003 J. Appl. Phys. 93 4337

    [12]

    Gao W X, Chang L, Ma H, You L, Yin J, Liu J M, Liu Z G, Wang J L, Yuan G L 2015 NPG Asia Mater. 7 e189

    [13]

    Xu W J, Kopyl S, Kholkin A, Rocha J 2019 Coordin. Chem. Rev. 387 398

    [14]

    Nandi P, Topwal D, Park N G, Shin H 2020 J. Phys. D: Appl. Phys. 53 493002

    [15]

    Köhnen E, Jost M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S 2019 Sustain. Energ. Fuels 3 1995

    [16]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820

    [17]

    Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376

    [18]

    Yun J S, Park C K, Jeong Y H, Cho J H, Paik J, Yoon S H, Hwang K 2016 Nanomater. Nanotechno. 6 20

    [19]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151

    [20]

    Fu D W, Cai H L, Liu Y M, Ye Q, Zhang W, Zhang Y, Chen X Y, Giovannetti G, Capone M, Li J Y, Xiong R G 2013 Science 339 425

    [21]

    Wang H, Liu H H, Zhang Z Y, Liu Z H, Lv Z L, Li T W, Ju W W, Li H S, Cai X W, Han H 2019 npj Comput. Mater 5 1

    [22]

    Wu H S, Wei S, Chen S W, Pan H C, Pan W P, Huang S, Tsai M, Yang P 2022 Adv. Sci. 9 2105974

    [23]

    Choi H S, Li S N, Park I, Liew W H, Zhu Z Y, Kwon K C, Wang L, Oh I, Zheng S S, Su C L, Xu Q H, Yao K, Pan F, Loh K P 2022 Nat. Commun. 13 794

    [24]

    Sun M J, Zheng C, Gao Y, Johnston A, Najarian A M, Wang P X, Voznyy O, Hoogland S, Sargent E H 2021 Adv. Mater. 33 2006368

    [25]

    Kasel T W, Deng Z Y, Mroz A M, Hendon C H, Butler K T, Canepa P 2019 Chem. Sci. 10 8187

    [26]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169

    [27]

    Kresse, Hafner 1994 Phys. Review. B 49 14251

    [28]

    Kresse, Hafner 1993 Phys. Review. B 47 558

    [29]

    Spaldin N A 2012 J. Solid State Chem. 195 2

    [30]

    Li Z Z, Li Z H, Peng G Q, Shi C, Wang H X, Ding S Y, Wang Q, Liu Z T, Jin Z W 2023 Adv. Mater. 35 2300480

    [31]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 48 4442

    [32]

    Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 47 1651

    [33]

    Wang X M, Yan Y F 2022 arXiv:2206.11137v1[cond-mat.mtrl-sci]

    [34]

    Singh J, Kaur H, Singh G, Tripathi S K 2021 Mater. Today Energy 21 100820

    [35]

    Al-Qaisi S, Rai D P, Haq B U, Ahmed R, Vu T V, Khuili M, Tahir S A, Alhashim H H 2021 Mater. Chem. Phys. 258 123945

    [36]

    Kiely E, Zwane R, Fox R, Reilly A M, Guerin S 2021 CrystEngComm 23 5697

    [37]

    Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104

    [38]

    Haid S, Bouadjemi B, Houari M, Matougui M, Lantri T, Bentata S, Aziz Z 2019 Solid State Commun. 294 29

    [39]

    Birch F 1938 J. Appl. Phys. 9 279

    [40]

    Kholil M I, Bhuiyan M T H 2020 Solid State Commun. 322 114053

    [41]

    Crisler D F, Cupal J J, Moore A R 1968 P. IEEE 56 225

    [42]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [43]

    Joffe H, Berlincourt D, Krueger H, Shiozawa L 1960 14th Annual Symposium on Frequency Control Atlantic City, NJ, USA May 21-June 2 1960 p19

    [44]

    Vanderbilt D, Hamann D R, Wu X F 2005 Phys. Rev. B 72 35105

    [45]

    X Y H 1991 Ferroelectric materials and their applications (Netherlands: Amsterdam)

    [46]

    Li F L, Tian S W, Wu G D, Jiang C, Wu F P, Zhao X 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China, November 1-4, 2019 p1

    [47]

    Guy I L, Muensit S, Goldys E M 1999 Appl. Phys. Lett. 75 4133

    [48]

    Irzhak D, Roshchupkin D, Fahrtdinov R 2012 Proceedings of ISAF-ECAPD-PFM 2012 Aveiro, Portugal, July 9-13 2012 p1

  • [1] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, doi: 10.7498/aps.72.20231313
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, doi: 10.7498/aps.72.20221630
    [3] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20190056
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20182128
    [5] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [6] 吴孔平, 齐剑, 彭波, 汤琨, 叶建东, 朱顺明, 顾书林. 第一性原理的广义梯度近似+U方法的纤锌矿Zn1-xMgxO极化特性与Zn0.75Mg0.25O/ZnO 界面能带偏差研究. 物理学报, doi: 10.7498/aps.64.187304
    [7] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [8] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [9] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, doi: 10.7498/aps.59.7880
    [10] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [11] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4930
    [12] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究. 物理学报, doi: 10.7498/aps.59.5061
    [13] 张晓青, 黄金峰, 王学文, 夏钟福. 聚四氟乙烯和氟化乙丙烯共聚物复合膜的压电性. 物理学报, doi: 10.7498/aps.58.3525
    [14] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [15] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [17] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
    [18] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, doi: 10.7498/aps.55.904
    [19] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, doi: 10.7498/aps.54.402
    [20] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, doi: 10.7498/aps.54.397
计量
  • 文章访问数:  124
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-24

/

返回文章
返回