搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于树枝结构单元的超材料宽带微波吸收器

保石 罗春荣 张燕萍 赵晓鹏

基于树枝结构单元的超材料宽带微波吸收器

保石, 罗春荣, 张燕萍, 赵晓鹏
PDF
导出引用
导出核心图
  • 本文设计并制作了一种基于树枝结构单元的超材料宽带微波吸收器.该超材料吸收器采用夹层结构,由按六边形密集排布的金属树枝阵列、双层介质基板和金属薄膜组成.通过调节树枝单元的几何参数和金属树枝阵列的排布方式,可以出现三个吸收峰,实现三频工作.通过调节三个吸收峰工作的频率形成宽频吸收,采用夹层结构提高吸收效率,从而对垂直入射到超材料表面的微波实现高吸收.实验表明吸收器的反射曲线从9.79 GHz到11.72 GHz出现了反射率小于10%的较宽吸收带,透射曲线恒等于0,吸收率大于90%的带宽为1.93 GHz.这种
    • 基金项目: 国家自然科学基金(批准号:50632030,50872113),国家重点基础研究发展计划(批准号:2004CB719805)和国防基础科研项目资助的课题.
    [1]

    [1]Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    [2]Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]

    [3]Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    [4]Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    [5]Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [6]

    [6]Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 物理学报 53 2206]

    [7]

    [7]Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [8]

    [8]Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [9]

    [9]Luo C R, Kang L, Zhao Q, Fu Q H, Song J, Zhao X P 2005 Acta Phys. Sin. 54 1607 (in Chinese) [罗春荣、康雷、赵乾、付全红、宋娟、赵晓鹏 2005 物理学报 54 1607]

    [10]

    ]Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express. 14 7188

    [11]

    ]Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [12]

    ]Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [13]

    ]Guo J Q, Luo C R, Zhao X P 2009 Chin. Phys. Lett. 26 044102

    [14]

    ]Luo C R, Wang S H, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3124 (in Chinese) [罗春荣、王连胜、郭继权、黄勇、赵晓鹏 2009 物理学报 58 3124]

    [15]

    ]Liu H, Zhao X P, Yang Y, Li Q W, Lv J 2008 Adv. Mater. 20 2050

    [16]

    ]Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [17]

    ]Christopher M B, Tao H, Liu X L, Richard D A, Zhang X, Padilla W J 2008 Opt. Express. 16 18565

    [18]

    ]Munk B A, Pryor J B, Gan Y B 2004 Electromagnetic Materials Proc. of the Symposium F 2003 (Singapore:World Scientific Publishing Company) p977

    [19]

    ]Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [20]

    ]Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [21]

    ]Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1]

    [1]Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    [2]Smith D R, Pendry J B 2006 J. Opt. Soc. Am. B 23 391

    [3]

    [3]Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [4]

    [4]Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    [5]Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [6]

    [6]Zhao Q, Zhao X P, Kang L, Zhang F L, Liu Y H, Luo C R 2004 Acta Phys. Sin. 53 2206 (in Chinese) [赵乾、赵晓鹏、康雷、张富利、刘亚红、罗春荣 2004 物理学报 53 2206]

    [7]

    [7]Zhang F L, Zhao Q, Liu Y H, Luo C R, Zhao X P 2004 Chin. Phys. Lett. 21 1330

    [8]

    [8]Zhao X P, Zhao Q, Kang L, Song J, Fu Q H 2005 Phys. Lett. A 346 87

    [9]

    [9]Luo C R, Kang L, Zhao Q, Fu Q H, Song J, Zhao X P 2005 Acta Phys. Sin. 54 1607 (in Chinese) [罗春荣、康雷、赵乾、付全红、宋娟、赵晓鹏 2005 物理学报 54 1607]

    [10]

    ]Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express. 14 7188

    [11]

    ]Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 241116

    [12]

    ]Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [13]

    ]Guo J Q, Luo C R, Zhao X P 2009 Chin. Phys. Lett. 26 044102

    [14]

    ]Luo C R, Wang S H, Guo J Q, Huang Y, Zhao X P 2009 Acta Phys. Sin. 58 3124 (in Chinese) [罗春荣、王连胜、郭继权、黄勇、赵晓鹏 2009 物理学报 58 3124]

    [15]

    ]Liu H, Zhao X P, Yang Y, Li Q W, Lv J 2008 Adv. Mater. 20 2050

    [16]

    ]Liu B Q, Zhao X P, Zhu W R, Luo W, Cheng X C 2008 Adv. Funct. Mater. 18 3523

    [17]

    ]Christopher M B, Tao H, Liu X L, Richard D A, Zhang X, Padilla W J 2008 Opt. Express. 16 18565

    [18]

    ]Munk B A, Pryor J B, Gan Y B 2004 Electromagnetic Materials Proc. of the Symposium F 2003 (Singapore:World Scientific Publishing Company) p977

    [19]

    ]Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101

    [20]

    ]Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. B 75 235114

    [21]

    ]Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [2] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [3] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [4] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线. 物理学报, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [5] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [6] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线. 物理学报, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [7] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器. 物理学报, 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [8] 罗春荣, 王连胜, 郭继权, 黄勇, 赵晓鹏. 电流变液调控的连通树枝状结构左手材料. 物理学报, 2009, 58(5): 3214-3219. doi: 10.7498/aps.58.3214
    [9] 顾世杰, 黄锡毅. 不稳定局域模及其对杂质中心吸收带宽的影响. 物理学报, 1965, 123(7): 1406-1418. doi: 10.7498/aps.21.1406
    [10] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应. 物理学报, 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3995
  • PDF下载量:  1315
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-11
  • 修回日期:  2009-07-27
  • 刊出日期:  2010-05-15

基于树枝结构单元的超材料宽带微波吸收器

  • 1. 西北工业大学应用物理系,西安 710129
    基金项目: 

    国家自然科学基金(批准号:50632030,50872113),国家重点基础研究发展计划(批准号:2004CB719805)和国防基础科研项目资助的课题.

摘要: 本文设计并制作了一种基于树枝结构单元的超材料宽带微波吸收器.该超材料吸收器采用夹层结构,由按六边形密集排布的金属树枝阵列、双层介质基板和金属薄膜组成.通过调节树枝单元的几何参数和金属树枝阵列的排布方式,可以出现三个吸收峰,实现三频工作.通过调节三个吸收峰工作的频率形成宽频吸收,采用夹层结构提高吸收效率,从而对垂直入射到超材料表面的微波实现高吸收.实验表明吸收器的反射曲线从9.79 GHz到11.72 GHz出现了反射率小于10%的较宽吸收带,透射曲线恒等于0,吸收率大于90%的带宽为1.93 GHz.这种

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回