搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维多链无序体系跳跃电导特性

马松山 徐慧 郭锐 崔麦玲

准一维多链无序体系跳跃电导特性

马松山, 徐慧, 郭锐, 崔麦玲
PDF
导出引用
导出核心图
  • 在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20070533075)和湖南省科技计划(批准号:2009FJ3004)资助的课题.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 物理学报 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 物理学报 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 物理学报 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Rodin A S, Fogler M M 2009 Phys. Rev. B 80 155435

    [3]

    Maul R, Wenzel W 2009 Phys. Rev. B 80 045424

    [4]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [5]

    Bascones E, Estévez V, Trinidad J A, MacDonald A H 2008 Phys. Rev. B 77 245422

    [6]

    Ben-Naim E, Krapivsky P L 2009 Phys. Rev. Lett. 102 190602

    [7]

    Brower P W, Mudry C, Simons B D, Altland A 1998 Phys. Rev. Lett. 81 862

    [8]

    Sedrakyan T, Alexander O 2004 Phys. Rev. B 70 214206

    [9]

    Hjort M, Stafstrom S 2000 Phys. Rev. B 62 5245

    [10]

    Xu H 1997 Chin. J. Comp. Phys.14 574 (in Chinese) [徐 慧 1997 计算物理 14 574]

    [11]

    Song Z Q, Xu H, Li Y F, Liu X L 2005 Acta Phys. Sin.54 2198 (in Chinese) [宋招权、徐 慧、李燕峰、刘小良 2005 物 理学报 54 2198] 〖12] Liu X L, Xu H, Ma S S, Song Z Q, Deng C S 2006 Acta Phys. Sin. 55 2492(in Chinese) [刘小良、徐 慧、马松山、宋招权、邓超生 2006 物理学报 55 2492]

    [12]

    Gallos L K, Movaghar B, Siebbeles L D A 2003 Phys. Rev. B 67 165417

    [13]

    Ivanov D A, Ostrovsky P M, Skvortsov M A 2009 Phys. Rev. B 79 205108

    [14]

    Kiwi M, Ramirez R, Trias A 1978 Phys. Rev. B 17 3063

    [15]

    Carpena P, Bemaola-Galvan P, Ivanov P C, Stanley H E 2002 Nature 418 955

    [16]

    Dean P, Martin J L 1960 Proc. Roy. Soc. A 259 409

    [17]

    Dean P 1960 Proc. Roy. Soc. 254 507

    [18]

    Dean P 1972 Rev. Mod. Phys. 44 127

    [19]

    Wu S Y, Tung C, Schwartz M 1974 J. Math. Phys.15 938

    [20]

    Wu S Y, Zheng Z B 1981 Prog. Phys. 1 125 (in Chinese) [吴式玉、郑兆勃 1981 物理学进展 1 125]

    [21]

    Wu S Y, Zheng Z B 1981 Phys. Rev. B 24 4787

    [22]

    Miller A, Abraham E 1960 Phys. Rev. 120 745

    [23]

    Ambegaokar V, Halperin B I, Langer J S 1971 Phys. Rev. B 4 2612

    [24]

    Fogler M M, Kelley R S 2005 Phys. Rev. Lett. 95 166604

    [25]

    Mcinnes J A, Butcher P N, Triberis G P 1990 J. Phys. Condens. Matter 2 7861

    [26]

    Galperin Y M 1999 Doped Semiconductors:Role of Disorder (Lectures at Lund University)

    [27]

    Xu H, Zeng H T 1992 Acta Phys. Sin. 41 1666(in Chinese) [徐 慧、曾红涛 1992 物理学报 41 1666]

    [28]

    Pasveer W F, Bobbert P A, Huinink H P, Michels M A J 2005 Phys. Rev. B 72 174204

    [29]

    Lazaros K G, Bijan M, Laurens D A S 2003 Phys. Rev. B 67 165417

    [30]

    Rosenow B, Nattermann T 2006 Phys. Rev. B 73 085103

    [31]

    Ma S S, Xu H, Li Y F, Zhang P H 2007 Acta Phys. Sin. 56 5394(in Chinese) [马松山、徐 慧、李燕峰、张鹏华 2007 物理学报 56 5394]

    [32]

    Ma S S, Xu H, Wang H Y, Guo R 2009 Chin. Phys. B 18 3591

  • [1] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 1-10. doi: 10.7498/aps.69.20191504
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2611
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-19
  • 修回日期:  2009-11-17
  • 刊出日期:  2010-07-15

准一维多链无序体系跳跃电导特性

  • 1. 中南大学物理科学与技术学院,长沙 410083
    基金项目: 

    高等学校博士学科点专项科研基金(批准号:20070533075)和湖南省科技计划(批准号:2009FJ3004)资助的课题.

摘要: 在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回