搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

池沸腾中气泡生长过程的格子Boltzmann方法模拟

蒋方明 李隆键 廖全 曾建邦

池沸腾中气泡生长过程的格子Boltzmann方法模拟

蒋方明, 李隆键, 廖全, 曾建邦
PDF
导出引用
导出核心图
  • 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0
    • 基金项目: 国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.
    [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [2] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [3] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [4] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [5] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法. 物理学报, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [6] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [7] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [8] 蒋国平, 肖波齐, 陈玲霞, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析. 物理学报, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [9] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [10] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [11] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [12] 夏伯丽, 张 云, 曹治觉. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [13] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [14] 黄乒花, 刘慕仁, 孔令江, 李华兵. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [15] 王文霞, 邱冰, 李华兵, 施娟. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [16] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [18] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [19] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [20] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  4862
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-05
  • 修回日期:  2010-10-05
  • 刊出日期:  2011-06-15

池沸腾中气泡生长过程的格子Boltzmann方法模拟

  • 1. (1)中国科学院可再生能源与天然气水合物重点实验室,广州 510640; (2)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030; (3)重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030;中国科学院可再生能源与天然气水合物重点实验室,广州 510640
    基金项目: 

    国家自然科学基金(批准号:51076172)、中国核动力研究设计院重点实验室基金(批准号:9140C710901090C71,9140C7101020802)和中央高校基本科研业务费(批准号:CDJXS11142232)资助的课题.

摘要: 在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回