搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源于团簇-共振模型的理想金属玻璃电子化学势均衡

韩光 羌建兵 王清 王英敏 夏俊海 朱春雷 全世光 董闯

源于团簇-共振模型的理想金属玻璃电子化学势均衡

韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯
PDF
导出引用
导出核心图
  • 理想金属玻璃是指完全满足电子结构稳定性的金属玻璃. 在我们前期工作中提出的团簇加连接原子及理想金属玻璃的团簇-共振结构模型的 基础上, 本文指出理想金属玻璃应该满足电子化学势均衡判据, 可定量给出团簇与连接原子的比例, 最终确定了理想金属玻璃成分式[团簇](连接原子)x. 运用此判据, 解析了Cu-Zr基和Co-B基块体金属玻璃, 实验确定的最佳形成能力成分满足电子化学势均衡.
    • 基金项目: 国家自然科学基金(批准号: 51041011,50901012)和 国家重点基础研究发展计划(批准号: 2007CB613902)资助的课题.
    [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Yu P, Bai H Y, Tang M B,WangWL,WangWH 2005 Acta Phys.Sin. 54 3284 (in Chinese) [余鹏, 白海洋, 汤美波, 王万录, 汪卫华 2005 物理学报 54 3284]

    [3]

    Wang Q, Qiang J B, Wang Y M, Xia J H, Lin Z, Zhang X F, DongC 2006 Acta Phys. Sin. 55 378 (in Chinese) [王清, 羌建兵, 王英敏, 夏俊海, 林哲, 张新房, 董闯 2006 物理学报 55 378]

    [4]

    Zhao Z F, Zhang Z, Li Z, Wen P, Zhao D Q, Pan M X, Wang W L, Wang W H 2004 Acta Phys. Sin. 53 850 (in Chinese) [赵作峰, 张志, 李正, 闻平, 赵德乾, 潘明祥, 王万录, 汪卫华 2004 物理学报 53 850]

    [5]

    Lu Z P, Liu C T 2002 Acta Mater. 50 3501

    [6]

    Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C 2003 J.Mater. Res. 18 642

    [7]

    Dong C, Wang Y M, Qiang J B, Wang D H, Chen W R, Shek C H2004 Mater. Trans. JIM 45 1177

    [8]

    Xia J H, Qiang J B,Wang Y M,Wang Q, Dong C 2006 Appl. Phys.Lett. 88 1019071

    [9]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H,Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273

    [10]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys.B 18 4949

    [11]

    Lu B C, Yao H J, Xu J, Li Y 2009 Appl. Phys. Lett. 94 241913

    [12]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103(in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [13]

    Han G, Qiang J B,Wang Q,Wang Y M, Zhu C L, Quan S G, DongC, Häussler P 2011 Philosophical Magazine 91 2404

    [14]

    Sanderson R T 1951 Science 114 670

    [15]

    Mortier W J, Ghosh K, Shankar S 1986 J. Am. Chem. Soc. 1084315

    [16]

    Parr R G, Donnelly R A, Levy M, Palke W E 1978 J. Chem. Phys.68 3801

    [17]

    Itskowitz P, Berkowitz M L 1997 J. Phys. Chem. A 101 5687

    [18]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [19]

    Mott N F, Jones H 1936 The Theory of the Properties of Metal andAlloys (Oxford: Clarendon ) p310

    [20]

    Nagel S R 1977 Phys. Rev. B 16 1694

    [21]

    Beck H, Oberie R 1979 Solids State Commun. 32 959

    [22]

    Haussler P 1992 Phys. Reports 222 65

    [23]

    Häussler P, Nowak H , Bhuiyan M, Barzola Q J 2002 Physica B316–317 489

    [24]

    Friedel J 1958 Nuovo Cimento 7 287

    [25]

    Bernal J D 1959 Nature 183 141

    [26]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [27]

    Saida J, Matsushita M, Inoue A 2001 Appl. Phys. Lett. 79 412

    [28]

    Wang W H, Wu E, Wang R J, Studer A J 2002 Phys. Rev. B 66104205

    [29]

    Li C, Saida J, Inoue A 2000 Mater. Trans. JIM 41 1521

    [30]

    Koster U, Zander D, Rainer J 2002 Mater. Sci. Forum 386–688 89

    [31]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A,Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [32]

    Wang R 1979 Nature 278 700

    [33]

    Wang W H, Wei Q, Friedrich S 1998 Phys. Rev. B 57 8211

    [34]

    Miracle D B 2004 Nature Mater. 3 697

    [35]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature439 419

    [36]

    Wang Y M, Wang Q, Zhao J J, Dong C 2010 Scripta Materialia63 178

    [37]

    Yuan L, Pang C, Wang Y M, Wang Q, Qiang J B, Dong C 2010 Intermetallics 18 1800

    [38]

    Zhu C L, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Intermetallics18 791

    [39]

    Zhu C L, Wang Q, Zhang J, Wang Y M, Dong C 2010 Inter. J.Minerals, Metallurgy and Materials 17 323

    [40]

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. (inChinese) 61 046102 [陈季香, 羌建兵, 王清, 董闯 2011 物理学报 in Press]

    [41]

    Luo L J, Wu J, Wang Q, Wang Y M, Han G, Dong C 2010 Phil.Mag. 90 3961

    [42]

    Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C2004 Acta Mater. 52 2621

    [43]

    Wang Q, Qiang J B,Wang Y M, Xia J H, Zhang X F, Dong C 2005Materials Science Forum 475–479 3381

    [44]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2007 Mate. Sci.Eng. A 449–451 281

    [45]

    Inoue A, Zhang W 2004 Mater. Trans. JIM 45 584

    [46]

    Jia P, Guo H, Li Y, Xu J, Ma E 2006 Scripta Mater. 54 2165

    [47]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater.Trans. JIM 32 609

    [48]

    Yao K F, Ruan F 2005 Chin. Phys. Lett. 22 1481

    [49]

    Chen Q J, Shen J, Zhang D L, Fan H B, Sun J F, McCartney D G2006 Mater. Sci. Eng. A 433 155

    [50]

    Zhu C L 2011 Ph.D. Dissertation (Dalian: Dalian University ofTechnology) (in Chinese) [朱春雷 2011 博士学位论文(大连: 大连理工大学)]

  • [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Yu P, Bai H Y, Tang M B,WangWL,WangWH 2005 Acta Phys.Sin. 54 3284 (in Chinese) [余鹏, 白海洋, 汤美波, 王万录, 汪卫华 2005 物理学报 54 3284]

    [3]

    Wang Q, Qiang J B, Wang Y M, Xia J H, Lin Z, Zhang X F, DongC 2006 Acta Phys. Sin. 55 378 (in Chinese) [王清, 羌建兵, 王英敏, 夏俊海, 林哲, 张新房, 董闯 2006 物理学报 55 378]

    [4]

    Zhao Z F, Zhang Z, Li Z, Wen P, Zhao D Q, Pan M X, Wang W L, Wang W H 2004 Acta Phys. Sin. 53 850 (in Chinese) [赵作峰, 张志, 李正, 闻平, 赵德乾, 潘明祥, 王万录, 汪卫华 2004 物理学报 53 850]

    [5]

    Lu Z P, Liu C T 2002 Acta Mater. 50 3501

    [6]

    Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C 2003 J.Mater. Res. 18 642

    [7]

    Dong C, Wang Y M, Qiang J B, Wang D H, Chen W R, Shek C H2004 Mater. Trans. JIM 45 1177

    [8]

    Xia J H, Qiang J B,Wang Y M,Wang Q, Dong C 2006 Appl. Phys.Lett. 88 1019071

    [9]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H,Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273

    [10]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys.B 18 4949

    [11]

    Lu B C, Yao H J, Xu J, Li Y 2009 Appl. Phys. Lett. 94 241913

    [12]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103(in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [13]

    Han G, Qiang J B,Wang Q,Wang Y M, Zhu C L, Quan S G, DongC, Häussler P 2011 Philosophical Magazine 91 2404

    [14]

    Sanderson R T 1951 Science 114 670

    [15]

    Mortier W J, Ghosh K, Shankar S 1986 J. Am. Chem. Soc. 1084315

    [16]

    Parr R G, Donnelly R A, Levy M, Palke W E 1978 J. Chem. Phys.68 3801

    [17]

    Itskowitz P, Berkowitz M L 1997 J. Phys. Chem. A 101 5687

    [18]

    Nagel S R, Tauc J 1975 Phys. Rev. Lett. 35 380

    [19]

    Mott N F, Jones H 1936 The Theory of the Properties of Metal andAlloys (Oxford: Clarendon ) p310

    [20]

    Nagel S R 1977 Phys. Rev. B 16 1694

    [21]

    Beck H, Oberie R 1979 Solids State Commun. 32 959

    [22]

    Haussler P 1992 Phys. Reports 222 65

    [23]

    Häussler P, Nowak H , Bhuiyan M, Barzola Q J 2002 Physica B316–317 489

    [24]

    Friedel J 1958 Nuovo Cimento 7 287

    [25]

    Bernal J D 1959 Nature 183 141

    [26]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [27]

    Saida J, Matsushita M, Inoue A 2001 Appl. Phys. Lett. 79 412

    [28]

    Wang W H, Wu E, Wang R J, Studer A J 2002 Phys. Rev. B 66104205

    [29]

    Li C, Saida J, Inoue A 2000 Mater. Trans. JIM 41 1521

    [30]

    Koster U, Zander D, Rainer J 2002 Mater. Sci. Forum 386–688 89

    [31]

    Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A,Saida J, Inoue A, Jiang J Z 2003 Appl. Phys. Lett. 83 3924

    [32]

    Wang R 1979 Nature 278 700

    [33]

    Wang W H, Wei Q, Friedrich S 1998 Phys. Rev. B 57 8211

    [34]

    Miracle D B 2004 Nature Mater. 3 697

    [35]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature439 419

    [36]

    Wang Y M, Wang Q, Zhao J J, Dong C 2010 Scripta Materialia63 178

    [37]

    Yuan L, Pang C, Wang Y M, Wang Q, Qiang J B, Dong C 2010 Intermetallics 18 1800

    [38]

    Zhu C L, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Intermetallics18 791

    [39]

    Zhu C L, Wang Q, Zhang J, Wang Y M, Dong C 2010 Inter. J.Minerals, Metallurgy and Materials 17 323

    [40]

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. (inChinese) 61 046102 [陈季香, 羌建兵, 王清, 董闯 2011 物理学报 in Press]

    [41]

    Luo L J, Wu J, Wang Q, Wang Y M, Han G, Dong C 2010 Phil.Mag. 90 3961

    [42]

    Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C2004 Acta Mater. 52 2621

    [43]

    Wang Q, Qiang J B,Wang Y M, Xia J H, Zhang X F, Dong C 2005Materials Science Forum 475–479 3381

    [44]

    Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C 2007 Mate. Sci.Eng. A 449–451 281

    [45]

    Inoue A, Zhang W 2004 Mater. Trans. JIM 45 584

    [46]

    Jia P, Guo H, Li Y, Xu J, Ma E 2006 Scripta Mater. 54 2165

    [47]

    Inoue A, Kato A, Zhang T, Kim S G, Masumoto T 1991 Mater.Trans. JIM 32 609

    [48]

    Yao K F, Ruan F 2005 Chin. Phys. Lett. 22 1481

    [49]

    Chen Q J, Shen J, Zhang D L, Fan H B, Sun J F, McCartney D G2006 Mater. Sci. Eng. A 433 155

    [50]

    Zhu C L 2011 Ph.D. Dissertation (Dalian: Dalian University ofTechnology) (in Chinese) [朱春雷 2011 博士学位论文(大连: 大连理工大学)]

  • [1] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [2] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [3] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [4] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [5] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [6] 马启慧, 张宇, 王清, 董红刚, 董闯. Co-Al-W基高温合金的团簇成分式. 物理学报, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [7] 韩光, 孙诚, 吴迪, 陈伟荣. Invar合金的电子化学势均衡判据. 物理学报, 2014, 63(6): 068101. doi: 10.7498/aps.63.068101
    [8] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [9] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [10] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [11] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [12] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [13] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [14] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] 郑萍, 白海洋, 陈兆甲, 雒建林, 汪卫华, 林德华, 佟存柱, 张杰. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [16] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [17] 于海滨, 杨群. 超稳定玻璃. 物理学报, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [18] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [19] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [20] 钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析. 物理学报, 2017, 66(13): 136103. doi: 10.7498/aps.66.136103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1999
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-03
  • 修回日期:  2011-05-25
  • 刊出日期:  2012-03-15

源于团簇-共振模型的理想金属玻璃电子化学势均衡

  • 1. 大连理工大学三束材料改性教育部重点实验室, 大连 116024;
  • 2. 大连大学, 物理科学与技术学院, 大连 116622
    基金项目: 

    国家自然科学基金(批准号: 51041011,50901012)和 国家重点基础研究发展计划(批准号: 2007CB613902)资助的课题.

摘要: 理想金属玻璃是指完全满足电子结构稳定性的金属玻璃. 在我们前期工作中提出的团簇加连接原子及理想金属玻璃的团簇-共振结构模型的 基础上, 本文指出理想金属玻璃应该满足电子化学势均衡判据, 可定量给出团簇与连接原子的比例, 最终确定了理想金属玻璃成分式[团簇](连接原子)x. 运用此判据, 解析了Cu-Zr基和Co-B基块体金属玻璃, 实验确定的最佳形成能力成分满足电子化学势均衡.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回