搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究

佟建波 黄茜 张晓丹 张存善 赵颖

纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究

佟建波, 黄茜, 张晓丹, 张存善, 赵颖
PDF
导出引用
  • 本文采用共烧结工艺将纳米Ag颗粒引入Yb3+, Er3+共掺的NaYF4上转换材料中, 利用X射线衍射及扫描电子显微镜技术对制备的NaYF4材料进行结构特性和表面形貌的表征, 通过吸收谱及荧光光谱测试技术对NaYF4材料光吸收及光发射特性进行表征. 通过对纳米Ag颗粒引入量的优化, 获得了Yb3+, Er3+共掺的NaYF4上转换材料荧光发射峰的增强, 300—800 nm全光谱范围内增益达28%, 在544 nm处获得最大增益55%, 具有显著的荧光增强效果. 同时分析了不同数量纳米Ag颗粒的引入对NaYF4材料吸收谱及光致发光特性影响, 指出了表面等离子激元的光猝灭及共振吸收增强作用机理.
    • 基金项目: 国家重点基础研究发展计划项目 (批准号: 2011CB201605, 2011CB201606), 国家高技术研究发展规划(批准号: 2009AA050602), 天津科技支撑项目(批准号: 08ZCKFGX03500), 国家自然科学基金(批准号: 60976051), 科技部国际合作重点项目(批准号: 2009DFA62580), 教育部重点实验室开放课题(批准号: 2011KFKT06), 中央高校基本科研业务费专项资金(批准号:65011981) 和教育部新世纪人才计划(批准号: NCET-08-0295)资助的课题.
    [1]

    Courrol L C, Ranieri I M, Baldochi S L, Samad R E, Freitas A Z, Gomes L, Vieira N D 2007 Journal of Luminescence 121 474

    [2]

    Heumann E, Bär S, Rademaker K, Huber G, Butterworth S, Diening A, Seelert W 2006 Appl. Phys. Lett. 88 061108

    [3]

    Downing E, Hesselink L, Ralston J, Macfarlane R 1996 Science 273 1185

    [4]

    Li Z, Zhang Y 2006 Angew. Chem. Int. Ed 45 7732

    [5]

    Saxena V N 1983 Indian J. Pure Appl. Phys. 21(5) 306

    [6]

    Gibart P, Auzel F, Guillaume J C, Zahraman K 1995 13th EPVSEC (Nice France) p85

    [7]

    Aisaka T,Fujii M,Hayashi S 2008 Appl. Phys. Lett.92 132105

    [8]

    Tao A,Sinsermsuksakul P,Yang P 2007 Nat. Nanotechnol 2 435

    [9]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Grating. Springer Tracts in Modern Physics Vol.88, Springer, Berlin.

    [10]

    Shlager K L, Schneider J B 1995 IEEE Antennas Propagation Magazine 37 No.4

    [11]

    Zhang H, Xu D, Huang Y, Duan X F 2011 Chem. Commun. 47 979

    [12]

    Wei H Y, Lin J, Feng Z B, Li D W, Ma Y, Huang W H 2010 Materials Science and Engineering B 172 321

    [13]

    Wang Y H,Zhou J, Wang T 2007 Chinese Journal Of Inorganic Chemistry 23 No.8

    [14]

    Jin X, Zhang X D, Lei Z F, Xiong S Z, Song F, Zhao Y 2008 Acta Phys. Sin. 57 4580 (in Chinese) [金鑫, 张晓丹, 雷志芳, 熊绍珍, 宋峰, 赵颖 2008 物理学报 57 4580]

    [15]

    Auzel F 2004 Chem. Rev. 104 139

    [16]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D,Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [17]

    Huang Q, Zhang X D, Ji W W, Wang J, Mi J, Li L N, Sun J, Geng WD, Geng X H, Zhao Y 2010 Acta Phys. 59 536 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 赵颖 2010 物理学报 59 536]

    [18]

    Wang L Y, Li Y D 2006 Chem. Commun. 42 2557

    [19]

    Liu L S, Lv S C, Sun J T 2010 Acta Phys. Sin. 59 6637 (in Chinese) [刘丽莎, 吕树臣, 孙江亭 2010 物理学报 59 6637]

    [20]

    Li C R, Xu W, Dong B, Li S F, Ding J H, Cheng Y Q, Yin H T 2010 Chin. Phys. B 19 047901

    [21]

    Hao E,Schatz G C 2004 Chem. Phys. 120 357

    [22]

    Kneipp K, Kneipp H,Itzkan I, Dasari R R, FeldMS 2002 J. Phys.: Condens. Matter 14 R597

    [23]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [24]

    Bozhevolnyi S I,Beermann J, Coello V 2003 Phys. Rev. Lett. 90 197403

    [25]

    Maier S A,Atwater H A 2005 J. Appl. Phys. 98 011101

    [26]

    Feng W,Sun L D,Yan C H 2009 Chem. Commun. 42 4393

    [27]

    Bardhan R,Grady N K, Cole J R, Joshi A , Halas N J 2009 ACS Nano 3 744

    [28]

    Zhang H, Li Y J, Ivanov I A, Qu Y Q, Huang Y, Duan X F 2010 Angew. Chem., Int. Ed. 49 2865

    [29]

    Schietinger S, Aichele T, Wang H Q, Nann T, Benson O 2010 Nano Lett. 10 134

  • [1]

    Courrol L C, Ranieri I M, Baldochi S L, Samad R E, Freitas A Z, Gomes L, Vieira N D 2007 Journal of Luminescence 121 474

    [2]

    Heumann E, Bär S, Rademaker K, Huber G, Butterworth S, Diening A, Seelert W 2006 Appl. Phys. Lett. 88 061108

    [3]

    Downing E, Hesselink L, Ralston J, Macfarlane R 1996 Science 273 1185

    [4]

    Li Z, Zhang Y 2006 Angew. Chem. Int. Ed 45 7732

    [5]

    Saxena V N 1983 Indian J. Pure Appl. Phys. 21(5) 306

    [6]

    Gibart P, Auzel F, Guillaume J C, Zahraman K 1995 13th EPVSEC (Nice France) p85

    [7]

    Aisaka T,Fujii M,Hayashi S 2008 Appl. Phys. Lett.92 132105

    [8]

    Tao A,Sinsermsuksakul P,Yang P 2007 Nat. Nanotechnol 2 435

    [9]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Grating. Springer Tracts in Modern Physics Vol.88, Springer, Berlin.

    [10]

    Shlager K L, Schneider J B 1995 IEEE Antennas Propagation Magazine 37 No.4

    [11]

    Zhang H, Xu D, Huang Y, Duan X F 2011 Chem. Commun. 47 979

    [12]

    Wei H Y, Lin J, Feng Z B, Li D W, Ma Y, Huang W H 2010 Materials Science and Engineering B 172 321

    [13]

    Wang Y H,Zhou J, Wang T 2007 Chinese Journal Of Inorganic Chemistry 23 No.8

    [14]

    Jin X, Zhang X D, Lei Z F, Xiong S Z, Song F, Zhao Y 2008 Acta Phys. Sin. 57 4580 (in Chinese) [金鑫, 张晓丹, 雷志芳, 熊绍珍, 宋峰, 赵颖 2008 物理学报 57 4580]

    [15]

    Auzel F 2004 Chem. Rev. 104 139

    [16]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D,Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [17]

    Huang Q, Zhang X D, Ji W W, Wang J, Mi J, Li L N, Sun J, Geng WD, Geng X H, Zhao Y 2010 Acta Phys. 59 536 (in Chinese) [黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 赵颖 2010 物理学报 59 536]

    [18]

    Wang L Y, Li Y D 2006 Chem. Commun. 42 2557

    [19]

    Liu L S, Lv S C, Sun J T 2010 Acta Phys. Sin. 59 6637 (in Chinese) [刘丽莎, 吕树臣, 孙江亭 2010 物理学报 59 6637]

    [20]

    Li C R, Xu W, Dong B, Li S F, Ding J H, Cheng Y Q, Yin H T 2010 Chin. Phys. B 19 047901

    [21]

    Hao E,Schatz G C 2004 Chem. Phys. 120 357

    [22]

    Kneipp K, Kneipp H,Itzkan I, Dasari R R, FeldMS 2002 J. Phys.: Condens. Matter 14 R597

    [23]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [24]

    Bozhevolnyi S I,Beermann J, Coello V 2003 Phys. Rev. Lett. 90 197403

    [25]

    Maier S A,Atwater H A 2005 J. Appl. Phys. 98 011101

    [26]

    Feng W,Sun L D,Yan C H 2009 Chem. Commun. 42 4393

    [27]

    Bardhan R,Grady N K, Cole J R, Joshi A , Halas N J 2009 ACS Nano 3 744

    [28]

    Zhang H, Li Y J, Ivanov I A, Qu Y Q, Huang Y, Duan X F 2010 Angew. Chem., Int. Ed. 49 2865

    [29]

    Schietinger S, Aichele T, Wang H Q, Nann T, Benson O 2010 Nano Lett. 10 134

  • [1] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [2] 张拴勤, 卢言利, 石云龙. 激光吸收铒掺杂上转换材料的光谱特性实验分析. 物理学报, 2009, 58(4): 2768-2771. doi: 10.7498/aps.58.2768
    [3] 刘向绯, 蒋昌忠, 任 峰, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究. 物理学报, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [4] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [5] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [6] 黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖. Al2O3薄膜/纳米Ag颗粒复合结构的光吸收谱及增强Raman散射光谱研究. 物理学报, 2010, 59(4): 2753-2759. doi: 10.7498/aps.59.2753
    [7] 赵亚丽, 高 帆, 汪壮兵, 明 海, 许小亮. Ag-SiO2复合薄膜形貌和吸收特性的研究. 物理学报, 2007, 56(6): 3564-3569. doi: 10.7498/aps.56.3564
    [8] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [9] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [10] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究. 物理学报, 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [11] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [12] 郑俊娟, 孙 刚. 周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合. 物理学报, 2005, 54(6): 2751-2757. doi: 10.7498/aps.54.2751
    [13] 陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华. 含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性. 物理学报, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [14] 朱频频, 刘建胜, 徐至展. Ar原子团簇与飞秒强激光相互作用产生的高能离子计算. 物理学报, 2004, 53(3): 803-807. doi: 10.7498/aps.53.803
    [15] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [16] 郑俊娟, 孙 刚. 周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质. 物理学报, 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
    [17] 周振婷, 杨理, 姚洁, 叶燃, 徐欢欢, 叶永红. 多层金属纳米点阵的制备及其光学性质的研究. 物理学报, 2013, 62(18): 188104. doi: 10.7498/aps.62.188104
    [18] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [19] 王光昶, 郑志坚, 谷渝秋, 温贤伦, 陈 涛, 张 婷, 张建炜. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [20] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2807
  • PDF下载量:  988
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-25
  • 修回日期:  2011-06-18
  • 刊出日期:  2012-02-05

纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究

  • 1. 南开大学光电子薄膜器件与技术研究所, 南开大学光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室(南开大学, 天津大学), 天津 300071;
  • 2. 河北工业大学信息工程学院, 天津 300130;
  • 3. 浙江大学硅材料国家重点实验室, 杭州 310027
    基金项目: 

    国家重点基础研究发展计划项目 (批准号: 2011CB201605, 2011CB201606), 国家高技术研究发展规划(批准号: 2009AA050602), 天津科技支撑项目(批准号: 08ZCKFGX03500), 国家自然科学基金(批准号: 60976051), 科技部国际合作重点项目(批准号: 2009DFA62580), 教育部重点实验室开放课题(批准号: 2011KFKT06), 中央高校基本科研业务费专项资金(批准号:65011981) 和教育部新世纪人才计划(批准号: NCET-08-0295)资助的课题.

摘要: 本文采用共烧结工艺将纳米Ag颗粒引入Yb3+, Er3+共掺的NaYF4上转换材料中, 利用X射线衍射及扫描电子显微镜技术对制备的NaYF4材料进行结构特性和表面形貌的表征, 通过吸收谱及荧光光谱测试技术对NaYF4材料光吸收及光发射特性进行表征. 通过对纳米Ag颗粒引入量的优化, 获得了Yb3+, Er3+共掺的NaYF4上转换材料荧光发射峰的增强, 300—800 nm全光谱范围内增益达28%, 在544 nm处获得最大增益55%, 具有显著的荧光增强效果. 同时分析了不同数量纳米Ag颗粒的引入对NaYF4材料吸收谱及光致发光特性影响, 指出了表面等离子激元的光猝灭及共振吸收增强作用机理.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回