搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

栅控电子枪中轮辐栅网截止放大系数的研究

李飞 肖刘 刘濮鲲 易红霞 万晓声

栅控电子枪中轮辐栅网截止放大系数的研究

李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声
PDF
导出引用
导出核心图
  • 本文首先建立轮辐栅网结构模型, 分区计算其屏蔽系数和单个栅格内栅丝半径与该栅格面积之比, 结合 Spangenberg书中的结论给出了轮辐栅网截止放大系数的新表达式, 然后详细地研究了栅丝半径、各环区所对球心角以及径向栅丝数目对截止放大系数的影响, 并计算了温度升高之后截止放大系数的变化, 最后给出了设计轮辐栅网的步骤和具体实例. 结果显示, 根据新表达式设计的栅网具有更好的稳定性和可靠性, 能够很好地解决平板正方形栅格近似中存在的问题.
      通信作者: , pkliu@mail.ie.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 60801030, 60931001)资助的课题.
    [1]

    Sun F Y, Wu Z H and Zhang K C 2010 Acta Phys. Sin. 59 1721 (in Chinese) [孙富宇, 吴振华, 张开春 2010 物理学报 textbf 59 1721]

    [2]

    Liu G Z, Huang W H, Shao H, Xiao R Z 2006 Chin. Phys. 15 600

    [3]
    [4]

    Liu G Z and Shao H 2003 Chin. Phys. 12 204

    [5]
    [6]
    [7]

    Liu G Z, Yang Z F 2010 Chin. Phys. B 19 075207

    [8]
    [9]

    Zhou L W, Gong H, Zhang Z Q, Zhang Y F, 2010 Acta Phys. Sin. 59 5459 (in Chinese) [周立伟, 公慧, 张智诠, 张轶飞 2010 物理学报 textbf 59 5459]

    [10]
    [11]

    Liao Fujiang Li Shuhan Qian Lijun 2002 3rd International Conference on Microwave and Millimeter Wave Technology Proceedings, 102105

    [12]

    Li F, Xaio L, Liu P K, Yi H X, Wan X S 2011 Acta Phys. Sin. 60 097901 (in Chinese) [李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声 2011 物理学报 textbf 60 097901]

    [13]
    [14]

    Schottky W 1919 Archiv. fr Elktrotech. 8 1

    [15]
    [16]
    [17]

    Abraham M 1919 Archiv. fr Elktrotech. 8 42

    [18]

    Laue M V 1919 Ann. der Phys. 59 465

    [19]
    [20]

    King R W 1920 Phys. Rev. 15 256

    [21]
    [22]

    Vogdes F B, Elder F R 1924 Phys.Rev. 24 683

    [23]
    [24]

    Bernard Salzberg 1942 Proc.Inst.Radio.Engrs. 30 134

    [25]
    [26]
    [27]

    Eaglesfield C C 1942 Wireless Engr. 19 447

    [28]
    [29]

    Spangenberg K R 1948 Vacuum Tubes (McGraw-Hill, NewYork)

    [30]
    [31]

    Wolkstein H J 1960 RCA Rev. 21 389

    [32]

    Electron tube design handbook compiling committees 1981 A handbook for design of electron optics system in microwave tube (First edition) (Beijing: National defense industry press) p5666 (in Chinese) [电子管设计手册编辑委员会1981微波管电子光学系统设计手册 (第一版)(北京: 国防工业出版社) 第5666页]

    [33]
    [34]
    [35]

    Molokosky S I, Sushkov A D 2005 Intense electron and ion beams (Springer-Verlag Berlin Heidelberg(printed in Germany)) pp145 155

    [36]
    [37]

    Harris J R, Neumann J G, O'Shea P G 2005 Free-Electron Laser Conf. Stanford CA, pp2126, THPP062

    [38]
    [39]
    [40]

    Haber I 2005 Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee pp29082910

    [41]
    [42]

    Haber I 2004 Nuclear Instruments and Methods A 519 396

  • [1]

    Sun F Y, Wu Z H and Zhang K C 2010 Acta Phys. Sin. 59 1721 (in Chinese) [孙富宇, 吴振华, 张开春 2010 物理学报 textbf 59 1721]

    [2]

    Liu G Z, Huang W H, Shao H, Xiao R Z 2006 Chin. Phys. 15 600

    [3]
    [4]

    Liu G Z and Shao H 2003 Chin. Phys. 12 204

    [5]
    [6]
    [7]

    Liu G Z, Yang Z F 2010 Chin. Phys. B 19 075207

    [8]
    [9]

    Zhou L W, Gong H, Zhang Z Q, Zhang Y F, 2010 Acta Phys. Sin. 59 5459 (in Chinese) [周立伟, 公慧, 张智诠, 张轶飞 2010 物理学报 textbf 59 5459]

    [10]
    [11]

    Liao Fujiang Li Shuhan Qian Lijun 2002 3rd International Conference on Microwave and Millimeter Wave Technology Proceedings, 102105

    [12]

    Li F, Xaio L, Liu P K, Yi H X, Wan X S 2011 Acta Phys. Sin. 60 097901 (in Chinese) [李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声 2011 物理学报 textbf 60 097901]

    [13]
    [14]

    Schottky W 1919 Archiv. fr Elktrotech. 8 1

    [15]
    [16]
    [17]

    Abraham M 1919 Archiv. fr Elktrotech. 8 42

    [18]

    Laue M V 1919 Ann. der Phys. 59 465

    [19]
    [20]

    King R W 1920 Phys. Rev. 15 256

    [21]
    [22]

    Vogdes F B, Elder F R 1924 Phys.Rev. 24 683

    [23]
    [24]

    Bernard Salzberg 1942 Proc.Inst.Radio.Engrs. 30 134

    [25]
    [26]
    [27]

    Eaglesfield C C 1942 Wireless Engr. 19 447

    [28]
    [29]

    Spangenberg K R 1948 Vacuum Tubes (McGraw-Hill, NewYork)

    [30]
    [31]

    Wolkstein H J 1960 RCA Rev. 21 389

    [32]

    Electron tube design handbook compiling committees 1981 A handbook for design of electron optics system in microwave tube (First edition) (Beijing: National defense industry press) p5666 (in Chinese) [电子管设计手册编辑委员会1981微波管电子光学系统设计手册 (第一版)(北京: 国防工业出版社) 第5666页]

    [33]
    [34]
    [35]

    Molokosky S I, Sushkov A D 2005 Intense electron and ion beams (Springer-Verlag Berlin Heidelberg(printed in Germany)) pp145 155

    [36]
    [37]

    Harris J R, Neumann J G, O'Shea P G 2005 Free-Electron Laser Conf. Stanford CA, pp2126, THPP062

    [38]
    [39]
    [40]

    Haber I 2005 Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee pp29082910

    [41]
    [42]

    Haber I 2004 Nuclear Instruments and Methods A 519 396

  • [1] 顾秉林, 王平山, 余少英, 雷芳燕, 罗 敏, 马乔生, 谭 杰. 导电栅网对相对论速调管中电子束的约束作用. 物理学报, 1998, 47(3): 485-493. doi: 10.7498/aps.47.485
    [2] 陈旭霖, 赵青, 刘建卫, 郑灵. 1THz回旋管双阳极磁控注入电子枪的分析及设计. 物理学报, 2012, 61(7): 074104. doi: 10.7498/aps.61.074104
    [3] 叶 超, 杜 伟, 宁兆元, 程珊华. 栅网与偏压对CHF3电子回旋共振放电等离子体特性的影响. 物理学报, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [4] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [5] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [6] 薄 勇, 王德武, 应纯同. 电子枪加热合金熔池的数值分析. 物理学报, 2003, 52(4): 883-889. doi: 10.7498/aps.52.883
    [7] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [8] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] 蒋曼英. 关於电子光学中的Petzval系数. 物理学报, 1956, 1653(5): 439-446.
    [10] 孙家锺, 蒋栋成, 周木易, 施安顿. 电子极化对氟化钙离子晶体的弹性系数、压电系数和介电常数的影响. 物理学报, 1965, 118(2): 402-413. doi: 10.7498/aps.21.402
    [11] 武新慧, 李家胤, 赵晓云, 李天明, 胡标. 一种新型缓变倒向场大回旋电子枪. 物理学报, 2011, 60(8): 080701. doi: 10.7498/aps.60.080701
    [12] 薄勇, 王德武, 应纯同. 冷热坩埚中电子枪加热金属熔池的数值分析. 物理学报, 2002, 51(7): 1535-1541. doi: 10.7498/aps.51.1535
    [13] 谢国锋, 王德武, 应纯同. 电子枪功率与束宽对金属原子蒸气特性的影响. 物理学报, 2002, 51(3): 584-589. doi: 10.7498/aps.51.584
    [14] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [15] 席善斌, 陆妩, 任迪远, 周东, 文林, 孙静, 吴雪. 栅控横向PNP双极晶体管辐照感生电荷的定量分离. 物理学报, 2012, 61(23): 236103. doi: 10.7498/aps.61.236103
    [16] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 物理学报, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [17] 黄晓梅, 徐慧, 任意, 刘小良. Fibonacci序列的统计属性和电子输运系数. 物理学报, 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [18] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究. 物理学报, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [19] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [20] 任之恭. H~-之吸收系数. 物理学报, 1936, 4(1): 38-42. doi: 10.7498/aps.2.38
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1686
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-27
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

栅控电子枪中轮辐栅网截止放大系数的研究

  • 1. 中国科学院电子学研究所, 中国科学院高功率微波源与技术重点实验室, 北京 100190;
  • 2. 中国科学院研究生院, 北京 100049
  • 通信作者: , pkliu@mail.ie.ac.cn
    基金项目: 

    国家自然科学基金重点项目(批准号: 60801030, 60931001)资助的课题.

摘要: 本文首先建立轮辐栅网结构模型, 分区计算其屏蔽系数和单个栅格内栅丝半径与该栅格面积之比, 结合 Spangenberg书中的结论给出了轮辐栅网截止放大系数的新表达式, 然后详细地研究了栅丝半径、各环区所对球心角以及径向栅丝数目对截止放大系数的影响, 并计算了温度升高之后截止放大系数的变化, 最后给出了设计轮辐栅网的步骤和具体实例. 结果显示, 根据新表达式设计的栅网具有更好的稳定性和可靠性, 能够很好地解决平板正方形栅格近似中存在的问题.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回