搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

韩旭 冯国英 武传龙 姜东升 周寿桓

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

韩旭, 冯国英, 武传龙, 姜东升, 周寿桓
PDF
导出引用
导出核心图
  • 采用单端连续抽运方式, 对自由运转的双包层掺镱光纤激光器的输出特性进行了详细的实验研究. 实验中不但观察到了自脉冲, 而且首次在自由运转的光纤激光器中观察到自锁模现象, 对它们产生的物理机理进行了相应的理论分析. 分析表明: 增益光纤的弱(未) 抽运部分对信号光的吸收导致光纤激光器内自脉冲的出现, 轴向模之间的拍频和自相位调制导致自锁模现象的出现, 而受激拉曼散射、 受激布里渊散射等非线性效应使它们进一步增强. 当抽运光功率略高于阈值时, 自脉冲宽度比较宽, 随抽运光功率增加自脉冲的脉宽变窄; 自脉冲包络面内的自锁模脉冲的宽度随抽运光功率增加也变窄, 进一步增加抽运光功率, 自脉冲和自脉冲包络面内的自锁模现象消失. 实验测得自锁模脉冲的间隔为224 ns, 最大(小) 自锁模脉冲的半高全宽约为35.0 ns (6.3 ns); 测得信号光的中心波长为1090 nm, 谱线半高全宽的最大(小) 值约为7.05 nm (2.01 nm).
    • 基金项目: 国家自然科学基金(批准号: 60890200, 10976017, 10876022) 和固体激光技术国家重点实验室基金资助的课题.
    [1]

    Myslinski P, Chrostowski J, Koningstein J A K, Simpson J R 1993 Appl. Opt. 32 286

    [2]

    Rangel-Rojo R, Mohebi M 1997 Opt. Commun. 137 98

    [3]

    Hideur A, Chartier T, Õzkul C, Sanchez F 2000 Opt. Commun. 186 311

    [4]

    Jackson S 2002 Electron. Lett. 38 1640

    [5]

    Leblond H, Salhi M, Hideur A, Chartier T, Brunel M, Sanchez F 2002 Phys. Rev. A 65 63811

    [6]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113

    [7]

    Brunet F, Taillon Y, Galarneau P, LaRochelle S 2005 J. Lightwave Technol. 23 2131

    [8]

    Wang Y G, Ma X Y, Fu S G, Fan W D, Li Q, Yuan S Z, Dong X Y, Song Y R, Zhang Z G 2004 Acta Phys. Sin. 53 1810 (in Chinese) [王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚 2004 物理学报 53 1810]

    [9]

    Li J, Ueda K, Musha M, Shirakawa A, Zhong L 2006 Appl. Phys. B 85 565

    [10]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Oak S, Shenoy M, Thyagarajan K 2010 Opt. Commun. 283 2206

    [11]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月 2008 物理学报 57 5045]

    [12]

    Upadhyaya B, Kuruvilla A, Chakravarty U, Shenoy M, Thyagarajan K, Oak S 2010 Appl. Opt. 49 2316

    [13]

    Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088

    [14]

    Lou Q H, He B, Xue Y H, Zhou J, Dong J X, Wei Y R, Wang W, Li Z, Qi Y F, Du S T 2009 Chin. J. Lasers 36 1277 (in Chinese) [楼祺洪, 何兵, 薛宇豪, 周军, 董景星, 魏运荣, 王炜, 李 震, 漆云凤, 杜松涛 2009 中国激光 36 1277]

    [15]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [16]

    Tsang Y, King T, Ko D, Lee J 2006 Opt. Commun. 259 236

    [17]

    Colin S, Contesse E, Boudec P, Stephan G, Sanchez F 1996 Opt. Lett. 21 1987

    [18]

    Sanchez F, LeBoudec P, François P L, Stephan G 1993 Phys. Rev. A 48 2220

    [19]

    Chernikov S, Zhu Y, Taylor J, Gapontsev V 1997 Opt. Lett. 22 298

    [20]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanchez F 2002 Opt. Lett. 27 1294

    [21]

    Kir'yanov A, Barmenkov Y 2006 Laser Phys. Lett. 3 498

    [22]

    MartÍnez-Rios A, Torres-Gómez I, Anzueto-Sanchez G, Selvas-Aguilar R 2008 Opt. Commun. 281 663

    [23]

    Upadhyaya B N, Chakravarty U, Kuruvilla A, Nath A K, Shenoy M R, Thyagarajan K 2008 Opt. Commun. 281 146

    [24]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Thyagarajan K, Shenoy M, Oak S 2007 Opt. Express 15 11576

    [25]

    Jun C S, Kim B Y 2011 Opt. Express 19 6290

    [26]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: John Wiley and Sons Inc.) pp59--62

    [27]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C 2008 Opt. Express 16 13240

  • [1]

    Myslinski P, Chrostowski J, Koningstein J A K, Simpson J R 1993 Appl. Opt. 32 286

    [2]

    Rangel-Rojo R, Mohebi M 1997 Opt. Commun. 137 98

    [3]

    Hideur A, Chartier T, Õzkul C, Sanchez F 2000 Opt. Commun. 186 311

    [4]

    Jackson S 2002 Electron. Lett. 38 1640

    [5]

    Leblond H, Salhi M, Hideur A, Chartier T, Brunel M, Sanchez F 2002 Phys. Rev. A 65 63811

    [6]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113

    [7]

    Brunet F, Taillon Y, Galarneau P, LaRochelle S 2005 J. Lightwave Technol. 23 2131

    [8]

    Wang Y G, Ma X Y, Fu S G, Fan W D, Li Q, Yuan S Z, Dong X Y, Song Y R, Zhang Z G 2004 Acta Phys. Sin. 53 1810 (in Chinese) [王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚 2004 物理学报 53 1810]

    [9]

    Li J, Ueda K, Musha M, Shirakawa A, Zhong L 2006 Appl. Phys. B 85 565

    [10]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Oak S, Shenoy M, Thyagarajan K 2010 Opt. Commun. 283 2206

    [11]

    Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月 2008 物理学报 57 5045]

    [12]

    Upadhyaya B, Kuruvilla A, Chakravarty U, Shenoy M, Thyagarajan K, Oak S 2010 Appl. Opt. 49 2316

    [13]

    Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088

    [14]

    Lou Q H, He B, Xue Y H, Zhou J, Dong J X, Wei Y R, Wang W, Li Z, Qi Y F, Du S T 2009 Chin. J. Lasers 36 1277 (in Chinese) [楼祺洪, 何兵, 薛宇豪, 周军, 董景星, 魏运荣, 王炜, 李 震, 漆云凤, 杜松涛 2009 中国激光 36 1277]

    [15]

    Jeong Y C, Boyland A J, Sahu J K, Chung S H, Nilsson J, Payne D N 2009 J. Opt. Soc. Korea 13 416

    [16]

    Tsang Y, King T, Ko D, Lee J 2006 Opt. Commun. 259 236

    [17]

    Colin S, Contesse E, Boudec P, Stephan G, Sanchez F 1996 Opt. Lett. 21 1987

    [18]

    Sanchez F, LeBoudec P, François P L, Stephan G 1993 Phys. Rev. A 48 2220

    [19]

    Chernikov S, Zhu Y, Taylor J, Gapontsev V 1997 Opt. Lett. 22 298

    [20]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanchez F 2002 Opt. Lett. 27 1294

    [21]

    Kir'yanov A, Barmenkov Y 2006 Laser Phys. Lett. 3 498

    [22]

    MartÍnez-Rios A, Torres-Gómez I, Anzueto-Sanchez G, Selvas-Aguilar R 2008 Opt. Commun. 281 663

    [23]

    Upadhyaya B N, Chakravarty U, Kuruvilla A, Nath A K, Shenoy M R, Thyagarajan K 2008 Opt. Commun. 281 146

    [24]

    Upadhyaya B, Chakravarty U, Kuruvilla A, Thyagarajan K, Shenoy M, Oak S 2007 Opt. Express 15 11576

    [25]

    Jun C S, Kim B Y 2011 Opt. Express 19 6290

    [26]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: John Wiley and Sons Inc.) pp59--62

    [27]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C 2008 Opt. Express 16 13240

  • [1] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究. 物理学报, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [2] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [3] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [4] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [5] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [6] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [7] 姚建铨, 魏臻, 任广军. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [8] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [9] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [10] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [11] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [12] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [13] 李进延, 陈 伟, 宋有建, 胡明列, 刘庆文, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [14] 熊水东, 徐攀, 马明祥, 胡正良, 胡永明. 掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究. 物理学报, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [15] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [16] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [17] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究. 物理学报, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [18] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [19] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [20] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器. 物理学报, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2778
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-16
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

掺镱光纤激光器自脉冲与自脉冲内的自锁模研究

  • 1. 四川大学电子信息学院, 成都 610065;
  • 2. 河南理工大学物理化学学院, 焦作 454000;
  • 3. 华北光电技术研究所, 北京 100015
    基金项目: 

    国家自然科学基金(批准号: 60890200, 10976017, 10876022) 和固体激光技术国家重点实验室基金资助的课题.

摘要: 采用单端连续抽运方式, 对自由运转的双包层掺镱光纤激光器的输出特性进行了详细的实验研究. 实验中不但观察到了自脉冲, 而且首次在自由运转的光纤激光器中观察到自锁模现象, 对它们产生的物理机理进行了相应的理论分析. 分析表明: 增益光纤的弱(未) 抽运部分对信号光的吸收导致光纤激光器内自脉冲的出现, 轴向模之间的拍频和自相位调制导致自锁模现象的出现, 而受激拉曼散射、 受激布里渊散射等非线性效应使它们进一步增强. 当抽运光功率略高于阈值时, 自脉冲宽度比较宽, 随抽运光功率增加自脉冲的脉宽变窄; 自脉冲包络面内的自锁模脉冲的宽度随抽运光功率增加也变窄, 进一步增加抽运光功率, 自脉冲和自脉冲包络面内的自锁模现象消失. 实验测得自锁模脉冲的间隔为224 ns, 最大(小) 自锁模脉冲的半高全宽约为35.0 ns (6.3 ns); 测得信号光的中心波长为1090 nm, 谱线半高全宽的最大(小) 值约为7.05 nm (2.01 nm).

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回