搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机发光二极管的光致磁电导效应

焦威 雷衍连 张巧明 刘亚莉 陈林 游胤涛 熊祖洪

有机发光二极管的光致磁电导效应

焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪
PDF
导出引用
导出核心图
  • 制备了结构为ITO/CuPc/NPB/Alq3/LiF/Al的常规有机发光二极管, 之后对器件采用波长为442 nm和325 nm的激光线进行照射产生激子, 并在小偏压下(保证器件没有开启)对激子的演化过程进行控制, 同时测量器件的光致磁电导(photo-induced magneto-conductance, PIMC). 实验发现, 不同于电注入产生激子的磁电导效应, PIMC在正、反小偏压下表现出明显不同的磁响应结果. 当给器件加上正向小偏压时, 器件的PIMC在0-40 mT范围内迅速上升; 随着磁场的进一步增大, 该PIMC增加缓慢, 并逐渐趋于饱和. 反向小偏压时, 器件的PIMC随着磁场也是先迅速增大(0-40 mT), 但达到最大值后却又逐渐减小. 通过分析外加磁场对器件光生载流子微观过程的影响, 采用'电子-空穴对'模型和超精细相互作用理论对正向偏压下的PIMC进行了解释; 反向偏压下因各有机层的能级关系, 为激子与电荷相互作用提供了必要条件, 运用三重态激子与电荷的反应机制可以解释PIMC出现高场下降的实验现象.
    • 基金项目: 重庆市科委自然科学基金(批准号: CSTC, 2010BA6002);国家自然科学基金(批准号: 10974157);复旦大学应用表面物理国家重点实验室开放课题(批准号: KL201106)和中央高校基本科研业务费专项资金(批准号: XDJK2009A001, XDJK2011C041)资助的课题.
    [1]

    Kalinowski J, Cocchi M, Virgili D, Marco D P, Fattori V 2003 Chem. Phys. Lett. 380 710

    [2]

    Wang Z, He Z H, Tan X W, Tao M L, Li G Q, Xiong Z H 2007 Acta Phy. Sin. 56 2979 (in Chinese) [王振, 何正红, 谭兴文, 陶敏龙, 李国庆, 熊祖洪 2007 物理学报 56 2979]

    [3]

    Odaka H, Okamoto H, Kawasaki M, Tokura Y 2006 Appl. Phys. Lett. 88 123501

    [4]

    Mermer Ö, Veeraraghavan G, Francis T L, Wohlgenannt M 2005 Solid Communications 134 631

    [5]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710

    [6]

    Xin L Y, Li C N, Li F, Liu S Y, Hu B 2009 Appl. Phys. Lett. 95 123306

    [7]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [8]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305

    [9]

    Li F, Xin L Y, Liu S Y, Hu B 2010 Appl. Phys. Lett. 97 073301

    [10]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202

    [11]

    Xiong Z H, Wu D, Vardney Z V, Shi J 2004 Nature 427 821

    [12]

    Nguyen T D, Sheng Y, Rybicki J, Wohlgenannt M 2008 Phys. Rev. B 77 235209

    [13]

    Hu B, Wu Y 2007 Nature Materials 6 985

    [14]

    Ren J F, Fu J Y, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 3814 (in Chinese) [任俊峰, 付吉永, 刘德胜, 谢士杰 2004 物理学报 53 3814]

    [15]

    Zhang Q M, Lei Y L, Song Q L, Chen P, Zhang Y, Xiong Z H 2011 Phys. Rev. Lett. 98 243303

    [16]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801

    [17]

    Zhang Y, Liu R, Leng Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 物理学报 59 5817]

    [18]

    Lei Y L, Liu R, Zhang Y, Tan X W, Xiong Z H 2009 Acta Phys. Sin. 58 1269 (in Chinese) [雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪 2009 物理学报 58 1269]

    [19]

    Sheng Y, Nguyen T D, Mermer Ö, Wohlgenannt M, Scherf U 2006 Phys. Rev. B 74 045213

    [20]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201

    [21]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Hrhold H H 1992 Phys. Rev. B 46 9320

    [22]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423

    [23]

    Wohlgenannt M, Vardeny Z V 2003 J. Phys. Condens. Matter 15 R83

    [24]

    Ito F, Ikoma T, Akiyama K, Watanabe A, Tero-Kubota S 2005 J. Phys. Chem. 109 8707

    [25]

    Doubleday Jr C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199

  • [1]

    Kalinowski J, Cocchi M, Virgili D, Marco D P, Fattori V 2003 Chem. Phys. Lett. 380 710

    [2]

    Wang Z, He Z H, Tan X W, Tao M L, Li G Q, Xiong Z H 2007 Acta Phy. Sin. 56 2979 (in Chinese) [王振, 何正红, 谭兴文, 陶敏龙, 李国庆, 熊祖洪 2007 物理学报 56 2979]

    [3]

    Odaka H, Okamoto H, Kawasaki M, Tokura Y 2006 Appl. Phys. Lett. 88 123501

    [4]

    Mermer Ö, Veeraraghavan G, Francis T L, Wohlgenannt M 2005 Solid Communications 134 631

    [5]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710

    [6]

    Xin L Y, Li C N, Li F, Liu S Y, Hu B 2009 Appl. Phys. Lett. 95 123306

    [7]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [8]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305

    [9]

    Li F, Xin L Y, Liu S Y, Hu B 2010 Appl. Phys. Lett. 97 073301

    [10]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202

    [11]

    Xiong Z H, Wu D, Vardney Z V, Shi J 2004 Nature 427 821

    [12]

    Nguyen T D, Sheng Y, Rybicki J, Wohlgenannt M 2008 Phys. Rev. B 77 235209

    [13]

    Hu B, Wu Y 2007 Nature Materials 6 985

    [14]

    Ren J F, Fu J Y, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 3814 (in Chinese) [任俊峰, 付吉永, 刘德胜, 谢士杰 2004 物理学报 53 3814]

    [15]

    Zhang Q M, Lei Y L, Song Q L, Chen P, Zhang Y, Xiong Z H 2011 Phys. Rev. Lett. 98 243303

    [16]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801

    [17]

    Zhang Y, Liu R, Leng Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 物理学报 59 5817]

    [18]

    Lei Y L, Liu R, Zhang Y, Tan X W, Xiong Z H 2009 Acta Phys. Sin. 58 1269 (in Chinese) [雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪 2009 物理学报 58 1269]

    [19]

    Sheng Y, Nguyen T D, Mermer Ö, Wohlgenannt M, Scherf U 2006 Phys. Rev. B 74 045213

    [20]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201

    [21]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Hrhold H H 1992 Phys. Rev. B 46 9320

    [22]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423

    [23]

    Wohlgenannt M, Vardeny Z V 2003 J. Phys. Condens. Matter 15 R83

    [24]

    Ito F, Ikoma T, Akiyama K, Watanabe A, Tero-Kubota S 2005 J. Phys. Chem. 109 8707

    [25]

    Doubleday Jr C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199

  • [1] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [2] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [4] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [5] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [6] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [7] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [8] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [9] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [10] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [11] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [12] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [13] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [14] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1441
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-10
  • 修回日期:  2012-03-11
  • 刊出日期:  2012-09-20

有机发光二极管的光致磁电导效应

  • 1. 西南大学物理科学与技术学院, 发光与实时分析教育部重点实验室, 重庆 400715;
  • 2. 复旦大学应用表面物理国家重点实验室, 上海 200433
    基金项目: 

    重庆市科委自然科学基金(批准号: CSTC, 2010BA6002)

    国家自然科学基金(批准号: 10974157)

    复旦大学应用表面物理国家重点实验室开放课题(批准号: KL201106)和中央高校基本科研业务费专项资金(批准号: XDJK2009A001, XDJK2011C041)资助的课题.

摘要: 制备了结构为ITO/CuPc/NPB/Alq3/LiF/Al的常规有机发光二极管, 之后对器件采用波长为442 nm和325 nm的激光线进行照射产生激子, 并在小偏压下(保证器件没有开启)对激子的演化过程进行控制, 同时测量器件的光致磁电导(photo-induced magneto-conductance, PIMC). 实验发现, 不同于电注入产生激子的磁电导效应, PIMC在正、反小偏压下表现出明显不同的磁响应结果. 当给器件加上正向小偏压时, 器件的PIMC在0-40 mT范围内迅速上升; 随着磁场的进一步增大, 该PIMC增加缓慢, 并逐渐趋于饱和. 反向小偏压时, 器件的PIMC随着磁场也是先迅速增大(0-40 mT), 但达到最大值后却又逐渐减小. 通过分析外加磁场对器件光生载流子微观过程的影响, 采用'电子-空穴对'模型和超精细相互作用理论对正向偏压下的PIMC进行了解释; 反向偏压下因各有机层的能级关系, 为激子与电荷相互作用提供了必要条件, 运用三重态激子与电荷的反应机制可以解释PIMC出现高场下降的实验现象.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回