搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用空间光调制器产生三维光阱阵列

徐淑武 周巧巧 顾宋博 纪宪明 印建平

用空间光调制器产生三维光阱阵列

徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平
PDF
导出引用
导出核心图
  • 本文提出了用液晶空间光调制器制作复合相位光栅、产生三维光阱阵列的新方案. 在本方案中, 首先将一维矩形光栅转变为能够产生纵向光阱阵列的环形光栅, 再把环形光栅和二维矩形光栅组合成复合光栅. 根据现有空间光调制器的技术参数, 模拟仿真设计了产生5× 5× 5光阱阵列的光栅, 以普通功率的高斯光波为输入光, 正透镜聚焦衍射光, 计算输出光强分布, 结果表明: 在透镜焦点附近获得具有很高峰值光强和光强梯度的三维光阱阵列, 囚禁冷原子的光学偶极势达到mK量级, 对原子的作用力远大于原子的重力. 用大功率激光作为输入光波时, 产生的光阱阵列也能用于囚禁Stark减速后的冷分子.
    • 基金项目: 国家自然科学重点基金(批准号: 11034002)、国家自然科学基金(批准号: 10904037, 10974055)、科技部量子调控重大研究计划项目(批准号: 2011CB921602)、华东师范大学精密光谱科学与技术国家重点实验室开放基金和江苏省自然科学基金(批准号: BK2008183) 资助的课题.
    [1]

    Tie L, Xue J K 2011 Chin.Phys. B 20 120311

    [2]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [3]

    Stoferle T, Moritz H, Gunter K, Kohl M, Esslinger T 2006 Phys. Rev. Lett. 96 030401

    [4]

    Birkl G, Gatzke M, Deutsch I H, Rolston S L, Phillips W D 1995 Phys. Rev. Lett. 75 2823

    [5]

    Matthias W, Andreas H, Axel G, Tilman E, Theodor W H 1995 Phys. Rev. Lett. 75 4583

    [6]

    Tasgin M E, Mustecaplioglu Ö E, Oktel M Ö 2007 Phys. Rev. A 75 063627

    [7]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [8]

    Zaleski T A, Kopec T K 2010 J. Phys. A: Math. Theor. 43 425303

    [9]

    Wang T, Javanainen J, Yelin S F 2007 Phys. Rev. A 76 011601

    [10]

    McKay D C, DeMarco B 2011 Rep. Prog. Phys. 74 054401

    [11]

    Jiannis K P, Peter L K 2003 Phys.Rev. Lett. 91 107902

    [12]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [13]

    Kastner M. 2010 Phys. Rev. Lett. 104 240403

    [14]

    Kessler D A, Barkai E 2010 Phys. Rev. Lett. 105 120602

    [15]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [16]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410

    [17]

    Friebel S, Andrea C D, Walz J, Weitz M, Hansch T W 1998 Phys. Rev. A 57 R20

    [18]

    Scheunemann R, Cataliotti F S, Hansch T W, Weitz M 1998 Phys. Rev. A 62 051801

    [19]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [20]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [21]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta Phys. Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [22]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平2004 物理学报 53 4163]

    [23]

    Mu R W, Lu J F, Xu S U, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [24]

    Fatemi F K, Bashkansky M, Dutton Z 2007 Opt. Express 15 3589

    [25]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [26]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta Phys. Sin. 60 063701 (in Chinese) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [27]

    Qi X Q, Gao C Q 2011 Acta Phys. Sin. 60 014208 (in Chinese) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [28]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [29]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东2009 物理学报 58 3154]

    [30]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [31]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [32]

    Liu X, Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [33]

    Gu S B, Xu S W, Lu J F Ji X M, Yin J P 2012 Acta Phys. Sin. 61 153701 (in Chinese) [顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平 2012 物理学报 61 153701]

    [34]

    Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

  • [1]

    Tie L, Xue J K 2011 Chin.Phys. B 20 120311

    [2]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [3]

    Stoferle T, Moritz H, Gunter K, Kohl M, Esslinger T 2006 Phys. Rev. Lett. 96 030401

    [4]

    Birkl G, Gatzke M, Deutsch I H, Rolston S L, Phillips W D 1995 Phys. Rev. Lett. 75 2823

    [5]

    Matthias W, Andreas H, Axel G, Tilman E, Theodor W H 1995 Phys. Rev. Lett. 75 4583

    [6]

    Tasgin M E, Mustecaplioglu Ö E, Oktel M Ö 2007 Phys. Rev. A 75 063627

    [7]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [8]

    Zaleski T A, Kopec T K 2010 J. Phys. A: Math. Theor. 43 425303

    [9]

    Wang T, Javanainen J, Yelin S F 2007 Phys. Rev. A 76 011601

    [10]

    McKay D C, DeMarco B 2011 Rep. Prog. Phys. 74 054401

    [11]

    Jiannis K P, Peter L K 2003 Phys.Rev. Lett. 91 107902

    [12]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [13]

    Kastner M. 2010 Phys. Rev. Lett. 104 240403

    [14]

    Kessler D A, Barkai E 2010 Phys. Rev. Lett. 105 120602

    [15]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [16]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410

    [17]

    Friebel S, Andrea C D, Walz J, Weitz M, Hansch T W 1998 Phys. Rev. A 57 R20

    [18]

    Scheunemann R, Cataliotti F S, Hansch T W, Weitz M 1998 Phys. Rev. A 62 051801

    [19]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [20]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [21]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta Phys. Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [22]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平2004 物理学报 53 4163]

    [23]

    Mu R W, Lu J F, Xu S U, Ji X M, Yin J P 2009 J. Opt. Soc. Am. B 26 80

    [24]

    Fatemi F K, Bashkansky M, Dutton Z 2007 Opt. Express 15 3589

    [25]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [26]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta Phys. Sin. 60 063701 (in Chinese) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [27]

    Qi X Q, Gao C Q 2011 Acta Phys. Sin. 60 014208 (in Chinese) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [28]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [29]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东2009 物理学报 58 3154]

    [30]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [31]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [32]

    Liu X, Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [33]

    Gu S B, Xu S W, Lu J F Ji X M, Yin J P 2012 Acta Phys. Sin. 61 153701 (in Chinese) [顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平 2012 物理学报 61 153701]

    [34]

    Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

  • [1] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [2] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [5] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [6] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [7] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [8] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [9] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [10] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [11] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [12] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [13] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3681
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-16
  • 修回日期:  2012-06-12
  • 刊出日期:  2012-11-20

用空间光调制器产生三维光阱阵列

  • 1. 南通大学理学院, 南通 226007;
  • 2. 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
    基金项目: 

    国家自然科学重点基金(批准号: 11034002)、国家自然科学基金(批准号: 10904037, 10974055)、科技部量子调控重大研究计划项目(批准号: 2011CB921602)、华东师范大学精密光谱科学与技术国家重点实验室开放基金和江苏省自然科学基金(批准号: BK2008183) 资助的课题.

摘要: 本文提出了用液晶空间光调制器制作复合相位光栅、产生三维光阱阵列的新方案. 在本方案中, 首先将一维矩形光栅转变为能够产生纵向光阱阵列的环形光栅, 再把环形光栅和二维矩形光栅组合成复合光栅. 根据现有空间光调制器的技术参数, 模拟仿真设计了产生5× 5× 5光阱阵列的光栅, 以普通功率的高斯光波为输入光, 正透镜聚焦衍射光, 计算输出光强分布, 结果表明: 在透镜焦点附近获得具有很高峰值光强和光强梯度的三维光阱阵列, 囚禁冷原子的光学偶极势达到mK量级, 对原子的作用力远大于原子的重力. 用大功率激光作为输入光波时, 产生的光阱阵列也能用于囚禁Stark减速后的冷分子.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回