搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铋的固相及液相多相状态方程研究

李英华 常敬臻 李雪梅 俞宇颖 戴程达 张林

铋的固相及液相多相状态方程研究

李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林
PDF
导出引用
  • 铋在高温高压下存在一系列复杂相结构,相变伴随着密度、内能等物理性质的改变. 采用半经验三项式Helmholtz自由能表达式,构建了铋的五个固相及液相的多相状态方程, 其中离子热振动自由能计算基于经典平均场理论给出的平均场势函数模型开展. 研究结果表明,状态方程计算给出的铋的相图、等温压缩线、液相的温度-密度曲线以及 冲击Hugoniot线等均与实验测量符合较好,故可认为本文构建的铋的多相状态方程具有良好的参数 合理性以及模型适用性.
    • 基金项目: 中国工程物理研究院科学与技术发展基金(批准号: 2011B0101002, 2010B0101002)和冲击波与爆轰波物理重点实验室基金(批准号: 9140C6701021102)资助的课题.
    [1]

    Greeff C W 2005 Modelling Simul. Mater. Sci. Eng. 13 1015

    [2]

    Pecker S, Eliezer S, Fisher D, Henis Z, Zinamon Z 2005 J. Appl. Phys. 98 043516

    [3]

    Wang Y, Li L 2000 Phys. Rev. B 62 196

    [4]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011 Physica B 406 4163

    [5]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [6]

    Bundy F P 1958 Phys. Rev. 110 314

    [7]

    Homan C G 1975 J. Phys. Chem. Solids 36 1249

    [8]

    Tonkov E Yu 1992 High Pressure Transformations: A Handbook (1st Ed.) (London: Taylor-Francis) p109

    [9]

    Aoki K, Fujiwara S, Kusakabe M 1982 J. Phys. Soc. Japan 51 3286

    [10]

    Young D A 1991 Phase Diagrams of Elements (1st Ed.) (Berkeley: University of California Press)

    [11]

    Akahama Y, Kawamura H, Singh A K 2002 J. Appl. Phys. 92 5892

    [12]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216

    [13]

    Chen J H, Iwasaki H, Kikegawa T, Yaoita K, Tsuji K 1994 High Pressure Science and Technology-1993 Colorado Springs, USA June 28-July 2, 1994 p421

    [14]

    Chen J H, Iwasaki H, Kikegawa T 1996 High Press. Res. 15 143

    [15]

    Gschneidner Jr K A 1964 Solid State Phys. 16 275

    [16]

    Marsh S P 1980 LASL Shock Hugoniot Data (1st Ed.) (Berkeley: California University Press) p23

    [17]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖, 戴诚达,谭华,王青松,王翔 2011 物理学报 60 106401]

    [18]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [19]

    Cox G A 2007 Shock Compression of Condensed Matter Waikoloa, June 24-29, 2007 p151

    [20]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [21]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [22]

    Dugdale J S, MacDonald D K C 1953 Phys. Rev. 89 832

    [23]

    Kittel C 2004 Introduction to Solid State Physics (8th Ed.) (New York: John Wiley and Sons) p131

    [24]

    Degtyareva O, Mcmahon M I, Nelmes R J 2004 High Pressure Res. 24 319

    [25]

    Hultgren R, Desai P D, Hawkins D T, Gleiser M, Kelley K K 1973 Selected Values of the Thermodynamic Properties of Binary Alloys (1st Ed.) (Ohio: ASM Metals Park) p41

    [26]

    Klement Jr W, Jayaraman A, Kennedy G C 1963 Phys. Rev. 131 1632

    [27]

    Bridegman P W 1935 Phys. Rev. 48 893

    [28]

    Peerdeman S A G, Trappeniers N J, Schouten J A 1980 High Temp. High Pressures 12 67

    [29]

    Chen J H, Kikegawa T, Shimomura O, Iwasaki H 1997 J. Synch. Rad. 4 21

    [30]

    Degtyareva V F 2000 Phys. Rev. B 62 9

    [31]

    Trunin R F, Zhernokletov M V, Kuznetsov N F, Shutov V V 1995 High Temp. 33 220

    [32]

    Donohue J 1982 The Structures of the Elements (1st Ed.) (Florida: Robert E. Krieger Publishing Company)

    [33]

    Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P, Makov G 2009 Euro. Phys. Lett. 86 36004

    [34]

    Alchagirov B B, Mozgovoi A G, Shamparov T M 2004 High Temp. 42 493

    [35]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

  • [1]

    Greeff C W 2005 Modelling Simul. Mater. Sci. Eng. 13 1015

    [2]

    Pecker S, Eliezer S, Fisher D, Henis Z, Zinamon Z 2005 J. Appl. Phys. 98 043516

    [3]

    Wang Y, Li L 2000 Phys. Rev. B 62 196

    [4]

    Zhang L, Li Y H, Yu Y Y, Li X M, Ma Y, Gu C G, Dai C D, Cai L C 2011 Physica B 406 4163

    [5]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [6]

    Bundy F P 1958 Phys. Rev. 110 314

    [7]

    Homan C G 1975 J. Phys. Chem. Solids 36 1249

    [8]

    Tonkov E Yu 1992 High Pressure Transformations: A Handbook (1st Ed.) (London: Taylor-Francis) p109

    [9]

    Aoki K, Fujiwara S, Kusakabe M 1982 J. Phys. Soc. Japan 51 3286

    [10]

    Young D A 1991 Phase Diagrams of Elements (1st Ed.) (Berkeley: University of California Press)

    [11]

    Akahama Y, Kawamura H, Singh A K 2002 J. Appl. Phys. 92 5892

    [12]

    Yoneda A, Endo S 1980 J. Appl. Phys. 51 3216

    [13]

    Chen J H, Iwasaki H, Kikegawa T, Yaoita K, Tsuji K 1994 High Pressure Science and Technology-1993 Colorado Springs, USA June 28-July 2, 1994 p421

    [14]

    Chen J H, Iwasaki H, Kikegawa T 1996 High Press. Res. 15 143

    [15]

    Gschneidner Jr K A 1964 Solid State Phys. 16 275

    [16]

    Marsh S P 1980 LASL Shock Hugoniot Data (1st Ed.) (Berkeley: California University Press) p23

    [17]

    Tan Y, Yu Y Y, Dai C D, Tan H, Wang Q S, Wang X 2011 Acta Phys. Sin. 60 106401 (in Chinese) [谭叶, 俞宇颖, 戴诚达,谭华,王青松,王翔 2011 物理学报 60 106401]

    [18]

    Asay J R 1977 J. Appl. Phys. 48 2832

    [19]

    Cox G A 2007 Shock Compression of Condensed Matter Waikoloa, June 24-29, 2007 p151

    [20]

    Pelissier J L, Wetta N 2001 Physica A 289 459

    [21]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [22]

    Dugdale J S, MacDonald D K C 1953 Phys. Rev. 89 832

    [23]

    Kittel C 2004 Introduction to Solid State Physics (8th Ed.) (New York: John Wiley and Sons) p131

    [24]

    Degtyareva O, Mcmahon M I, Nelmes R J 2004 High Pressure Res. 24 319

    [25]

    Hultgren R, Desai P D, Hawkins D T, Gleiser M, Kelley K K 1973 Selected Values of the Thermodynamic Properties of Binary Alloys (1st Ed.) (Ohio: ASM Metals Park) p41

    [26]

    Klement Jr W, Jayaraman A, Kennedy G C 1963 Phys. Rev. 131 1632

    [27]

    Bridegman P W 1935 Phys. Rev. 48 893

    [28]

    Peerdeman S A G, Trappeniers N J, Schouten J A 1980 High Temp. High Pressures 12 67

    [29]

    Chen J H, Kikegawa T, Shimomura O, Iwasaki H 1997 J. Synch. Rad. 4 21

    [30]

    Degtyareva V F 2000 Phys. Rev. B 62 9

    [31]

    Trunin R F, Zhernokletov M V, Kuznetsov N F, Shutov V V 1995 High Temp. 33 220

    [32]

    Donohue J 1982 The Structures of the Elements (1st Ed.) (Florida: Robert E. Krieger Publishing Company)

    [33]

    Greenberg Y, Yahel E, Caspi E N, Benmore C, Beuneu B, Dariel M P, Makov G 2009 Euro. Phys. Lett. 86 36004

    [34]

    Alchagirov B B, Mozgovoi A G, Shamparov T M 2004 High Temp. 42 493

    [35]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李俊, 周显明, 李加波, 李赛男, 祝文军, 王翔, 经福谦 2007 物理学报 56 6557]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2935
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-10
  • 修回日期:  2012-04-13
  • 刊出日期:  2012-10-05

铋的固相及液相多相状态方程研究

  • 1. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理国家重点实验室, 绵阳 621900;
  • 2. 中国工程物理研究院总体工程研究所, 绵阳 621900
    基金项目: 

    中国工程物理研究院科学与技术发展基金(批准号: 2011B0101002, 2010B0101002)和冲击波与爆轰波物理重点实验室基金(批准号: 9140C6701021102)资助的课题.

摘要: 铋在高温高压下存在一系列复杂相结构,相变伴随着密度、内能等物理性质的改变. 采用半经验三项式Helmholtz自由能表达式,构建了铋的五个固相及液相的多相状态方程, 其中离子热振动自由能计算基于经典平均场理论给出的平均场势函数模型开展. 研究结果表明,状态方程计算给出的铋的相图、等温压缩线、液相的温度-密度曲线以及 冲击Hugoniot线等均与实验测量符合较好,故可认为本文构建的铋的多相状态方程具有良好的参数 合理性以及模型适用性.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回